
A Rule-Based Procedure for Equivariant Nominal

Unification∗

Takahito Aoto1 and Kentaro Kikuchi2

1 Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University

kentaro@nue.riec.tohoku.ac.jp

Abstract

Nominal rewriting is a rewriting formalism that deals with variable binding. An equivariant nominal

unification is a basic ingredient of nominal rewriting for computing rewrite steps and critical pairs. We

present a rule-based procedure for the equivariant nominal unification.

1 Introduction

Rewriting captures various computational aspects in equational reasoning. Higher-order rewrit-
ing deals with rewriting of expressions with higher-order functions and/or variable binding. The
nominal approach [5, 6] is a novel approach to deal with variable binding and α-equivalence—
unlike other approaches, it incorporates permutations and freshness conditions on variables
(atoms) as basic ingredients. Nominal rewriting [3, 4] is a formalism of rewriting based on the
nominal approach.

A basic ingredient of nominal rewriting is a computation of rewrite step, i.e. to compute a
term t such that ∆ ` s →R t or even (representatives of) all t such that ∆ ` s →R t, from a
given nominal rewrite system R, a freshness context ∆ and a term s. The main challenge here
is to find suitable π and σ such that ∆ ` ∇πσ and ∆ ` s|p ≈α lπσ, when fixing ∇ ` l→ r ∈ R
and a position p in s. The problem is known to be an instance of equivariant nominal unification
[2]. The equivariant nominal unification is also necessary for computing critical pairs which is
a basic component for developing the Knuth-Bendix completion procedure.

In [2], an equivariant nominal unification procedure is given. In this paper, we consider a
framework of equivariant nominal unification which is simpler than [2], and present an alter-
native equivariant nominal unification procedure, which is fully presented in a rule-based form.
In what follows, we will develop our procedure from a basic ingredient to a full procedure in a
step by step manner. Our procedure will be completed in Section 5 and a discussion on cor-
rectness will be postponed until Section 6. We refer to [3, 4, 7] for basic notions and notations
on nominal terms. Familiarity with nominal unification [8] is assumed from Section 5.

2 Atom Identity Solving

We fix a countably infinite set A = {a, b, c, . . .} of atoms ranged over by a, b, c, . . . and a
countably infinite set XA of atom variables ranged over by A,B, Elements of A ∪ XA are
atom expressions ranged over by α, β, Atom equations are of the form α ≈ β and atom
disequations are of the form α 6≈ β where α ∼ β and β ∼ α (∼ ∈ {≈, 6≈}) are identified. An

∗This work is partially supported by JSPS KAKENHI (Nos. 15K00003, 16K00091).

A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

atom identity problem is a set of atom equations and atom disequations. The atom identity
solving procedure ProcAtomIdent0 consists of the following derivation rules where a lower set
is derived from an upper set.

{α ≈ α}] E
E

{a 6≈ b}] E
E

a 6= b
{α 6≈ α}] E

⊥
{a ≈ b}] E

⊥ a 6= b

{A ≈ β}] E
{A 7→ β} ∪ E[β/A]

A 6= β

Here,] denotes the disjoint union, and E[β/A] denotes the constraints obtained by replacing
all occurrences of A in E by β. A solved form E is either ⊥ or a set of disequations of the
form A 6≈ β, and assignments of the form A 7→ α where A does not occur elsewhere in E. The
intended meaning is that ≈ (6≈) is an equality (disequality) on atoms and that atom variables
are instantiated by atoms.

We now also consider a countably infinite set XP of permutation variables ranged over by
P,Q An expression of the form P · α is a primitive atomic expression. We now extend the
atom identity problems to allow also the form P ·α ∼ β (∼ ∈ {≈, 6≈}). The following derivation
rules are added to ProcAtomIdent0:

{P ·α ≈ β}] E
{P : α 7→ β} ∪ E

{P ·α 6≈ β}] E
{P : α 7→ A,A 6≈ β}] E

{P : α 7→ β′}] E
{β ≈ β′} ∪ E

P : α 7→ β ∈ E
{P : α′ 7→ β}] E
{α ≈ α′} ∪ E

P : α 7→ β ∈ E

E
{β 6≈ β′} ∪ E

P : α 7→ β, P : α′ 7→ β′ ∈ E
α 6≈ α′ ∈ E, β 6≈ β′ /∈ E

E
{α 6≈ α′} ∪ E

P : α 7→ β, P : α′ 7→ β′ ∈ E
β 6≈ β′ ∈ E,α 6≈ α′ /∈ E

where in the second derivation rule, A is a fresh atom variable. The result is the (full) atom
identity solving procedure ProcAtomIdent. Then a solved form E (6= ⊥) can also contain
constraints of the form P : α 7→ β. The intended meaning is that a permutation is a (finite)
bijection on A, P · α is an application, and P : α 7→ β is a constraint on P such that P maps
α to β.

3 Atomic Equality Solving Procedure

Atomic expressions and permutation expressions are generated by the following grammar in a
mutually recursive way:

atomic expression: v, w ∈ EA := Π·α (moderated atom expression)
permutation expression: Π,Ψ ∈ EP := P (permutation-variables)

| Id (identity)
| (v w) (swap)
| Π ◦Ψ (composition)
| Π−1 (inverse)

Here we have the following new constructs “Id”, “(,)”, “◦” and “−1”. The names of the
construction suggests the indented meaning. For example, we have (((P ◦Q)−1 ·A) B) ∈ EP and

2

A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

(((P ◦Q)−1 ·A) B) · c ∈ EA. Clearly, a primitive atomic expression is an atomic expression. An
atomic (dis)equality is a (dis)equation of the form Π·α ∼ Π′·β, and a set of atomic (dis)equalities
is an atomic equality problem. The atomic equality solving procedure ProcAtomEq consists of
the following derivation rules:

{Π·α ∼ Π′·β}] E
{Π·α ≈ A,Π′·β ∼ A} ∪ E

{P ·v ∼ β}] E
{v ≈ A,P ·A ∼ β} ∪ E v /∈ XA ∪ A

{Id·v ∼ β}] E
{v ∼ β} ∪ E

{(v v′)·w ∼ β}] E
{v 6≈ w, v′ 6≈ w,w ∼ β} ∪ E

{(v v′)·w ∼ β}] E
{v ≈ w, v′ ∼ β} ∪ E

{(v v′)·w ∼ β}] E
{v′ ≈ w, v ∼ β} ∪ E

{(Π ◦Π′)·w ∼ β}] E
{Π′·w ≈ A,Π·A ∼ β} ∪ E

{Π−1·w ∼ β}] E
{Π·β ≈ A,w ∼ A} ∪ E

In the first two and the last two derivation rules, A is a fresh atom variable. This procedure
non-deterministically reduces an atomic equality problem to an atom identity problem, which
in turn given to the procedure ProcAtomIdent.

4 Freshness Constraint Solving Procedure

We now fix a countably infinite set X of term variables ranged over by X,Y, A nominal
signature Σ is a set of function symbols ranged over by f, g, Term expressions are given by
the following grammar:

term expression: S, T ∈ ET := v (atomic expressions)
| Π·X (moderated term-variables)
| [v]T (abstraction)
| (f T) (function applications)
| 〈T1, . . . , Tn〉 (tuples)

A freshness constraint expression is a pair v#T of v ∈ EA and T ∈ ET . An freshness constraint
problem is a finite set of freshness constraint expressions. The freshness constraint solving
procedure ProcFreshCnstr consists of the following derivation rules:

{v#w}] P
{v 6≈ w} ∪ P

{v#Π·X}] P
{Π−1·v ≈ A,A#X} ∪ P

{v#[w]T}] P
{v ≈ w} ∪ P

{v#[w]T}] P
{v#T} ∪ {v 6≈ w} ∪ P

{v#f T}] P
{v#T} ∪ P

{v#〈T1, . . . , Tn〉}] P
{v#T1, . . . , v#Tn} ∪ P

In the second rule, A is a fresh atom variable. Permutation action Π·v ∈ EA on an atomic
expression v by permutation Π used in the second rule is given by Π·(Π′·α) = (Π ◦Π′)·α. This
procedure non-deterministically reduces a freshness constraint problem to an atomic equality
problem supplemented with primitive freshness constraints of the form A#X. The result is
given to the procedure ProcAtomEq, where any primitive freshness constraint is omitted except
that any atom variable A in A#X needs to be updated accordingly by the operation [β/A].

3

A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

5 Equivariant Unification Procedure

A permutation action Π·T ∈ ET on a term expression T by Π is given by the following rules:

Π·v = Π·v Π·([v]T) = [Π·v](Π·T)
Π·(Π′·X) = (Π ◦Π′)·X Π·(f T) = f Π·T

Π·〈T1, . . . , Tn〉 = 〈Π·T1, . . . ,Π·Tn〉

Here, the rhs of the first rule is given by the permutation action on an atomic expression.
A substitution is a mapping σ : X → ET with a finite domain {X ∈ X | σ(X) 6= X}. A

substitution σ such that σ(X) = T with domain {X} is written as {X 7→ T}. The application
of a substitution on term expressions is given by

vσ = v ([v]T)σ = [v](Tσ)
(Π·X)σ = Π·σ(X) (f T)σ = f (Tσ)

〈T1, . . . , Tn〉σ = 〈T1σ, . . . , Tnσ〉

Here, rhs of the second rule is given by the permutation action (on a term expression).
An α-equivalence constraint is a pair S ≈α T of S, T ∈ ET . An equivariant unification

problem (EUP) is a finite set of α-equivalence constraints. The equivariant unification procedure
ProcEqvUnif consists of the following derivation rules:

〈{Π·X ≈α Π′·X}] E, σ〉
〈{#(X,Π,Π′)} ∪ E, σ〉

〈{T ≈α π·X}] E, σ〉
〈E{X 7→ π−1·T}, {X 7→ π−1·T} ◦ σ〉

X /∈ X (T)

〈{[v]S ≈α [w]T}] E, σ〉
〈{v ≈ w, S ≈α T} ∪ E, σ〉

〈{[v]S ≈α [w]T}] E, σ〉
〈{v 6≈ w, S ≈α (v w)·T, v#T} ∪ E, σ〉

〈{f S ≈α f T}] E, σ〉
〈{S ≈α T} ∪ E, σ〉

〈{〈S1, . . . , sn〉 ≈α 〈T1, . . . , Tn〉}] E, σ〉
〈{S1 ≈α T1, . . . , Sn ≈α Tn} ∪ E, σ〉

Here X (T) denotes the set of term variables in a term expression T . This procedure starts
with a pair of an EUP and the identity substitution. This procedure non-deterministically
generates a pair of the union of a freshness constraint problem and an atomic equality problem
supplemented with additional constraints of the form #(X,Π,Π′), and a substitution. The
former is given to the procedure ProcFreshCnstr, where freshness constraints are reduced to
atomic equality problem. The constraints of the form #(X,Π,Π′) is untouched except that any
atom variable A in Π,Π′ needs to be updated accordingly by the operation [β/A]. All in all,
the procedure ProcEqvUnif non-deterministically generates an answer constraint, which is a
finite set of expressions of the following forms:

A 7→ v | P : α 7→ β | α 6≈ β | X 7→ T | α#X | #(X,Π,Π′)

where constraints of form X 7→ T is obtained from the substitution part of ProcEqvUnif. The
set of all answer constraints generated by ProcEqvUnif from given EUP C is a solution of the
EUP, which is denoted by Sol(C).

6 Correctness of the Procedure

The sets of nominal terms and permutations are denoted by T and P, respectively. An instan-
tiation is a pair θ = 〈θA, θP 〉 of mappings θA : XA → A and θP : XP → P. For each Π ∈ EP ,

4

A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

v ∈ EA, S ∈ ET , their interpretations [[Π]]θ ∈ P, [[v]]θ ∈ A, [[S]]θ ∈ T by an instantiation θ are
defined by the following:

[[P]]θ = θP (P) [[Π·α]]θ = [[Π]]θ·[[α]]θ [[a]]θ = a
[[Id]]θ = Id [[Π·X]]θ = [[Π]]θ·X [[A]]θ = θA(A)

[[(v w)]]θ = ([[v]]θ [[w]]θ) [[[v]T]]θ = [[[v]]θ][[T]]θ
[[Π ◦Ψ]]θ = [[Π]]θ ◦ [[Ψ]]θ [[f T]]θ = f [[T]]θ

[[Π−1]]θ = [[Π]]−1θ [[〈T1, . . . , Tn〉]]θ = 〈[[T1]]θ, . . . , [[Tn]]θ〉

Note here that “Id” etc. in the rhs’s of the definitions are not constructs but meta-operations.
For example, if we take θP (P) = (a b), θP (Q) = (b c) and θA(A) = a, θA(B) = b then we have
[[(((P ◦Q)−1 ·A) B)]]θ = (c b) ∈ P, [[(((P ◦Q)−1 ·A) B) · c]]θ = b ∈ A and [[[(((P ◦Q)−1 ·A) B) ·
c](f 〈P−1 ·X,Q−1 · c〉)]]θ = [b](f 〈(a b) ·X, b〉) ∈ T .

We put [[v#T]]θ = [[v]]θ#[[T]]θ and [[S ≈α T]]θ = [[S]]θ ≈α [[T]]θ. A model of an EUP
C = {γ1, . . . , γn} is a triple 〈θ, σ,∆〉 of an instantiation θ, a substitution σ and a freshness
context ∆ such that ∆ ` [[γi]]θσ for all 1 ≤ i ≤ n. We write 〈θ, σ,∆〉 |= C if 〈θ, σ,∆〉 is a
model of C. A triple 〈θ, σ,∆〉 is a model of an answer constraint S, written as 〈θ, σ,∆〉 |= S,
if θA(A) = [[v]]θ for any A 7→ v ∈ S, θP (P)([[α]]θ) = [[β]]θ for any P : α 7→ β ∈ S, [[α]]θ 6= [[β]]θ
for any α 6≈ β ∈ S, σ(X) = [[T]]θ for all X 7→ T ∈ S, ∆ ` [[α]]θ#Xσ for all α#X ∈ S, and
∆ ` a#Xσ for any a ∈ ds([[Π]]θ, [[Π

′]]θ) and #(X,Π,Π′) ∈ S.
Now, the correctness of our equivariant unification procedure is stated as follows.

Theorem 1. For a given EUP C, ProcEqvUnif computes a finite set M = Sol(C) of answer
constraints such that, for any model 〈θ, σ,∆〉, 〈θ, σ,∆〉 |= C iff ∃S ∈ M. 〈θ, σ,∆〉 |= S.

7 Conclusion

In this paper, we have given a rule-based equivariant nominal unification procedure. To the
best of our knowledge, such a rule-based procedure has not been reported for the equivariant
nominal unification. We anticipate that our rule-based procedure is helpful to give a correctness
proof easy to understand and suitable for formal verification. Our procedure has been used to
implement a confluence prover for nominal rewriting [1].

References

[1] T. Aoto and K. Kikuchi. Nominal confluence tool. In Proc. 8th IJCAR, LNCS. Springer-Verlag,
2016. To appear.

[2] J. Cheney. Equivariant unification. J. of Automated Reasoning, 45:267–300, 2010.

[3] M. Fernández and M. J. Gabbay. Nominal rewriting. Inform. and Comput., 205:917–965, 2007.

[4] M. Fernández, M. J. Gabbay, and I. Mackie. Nominal rewriting systems. In Proc. 6th PPDP, pages
108–119. ACM Press, 2004.

[5] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Comput., 13:341–363, 2002.

[6] A. M. Pitts. Nominal logic, a first order theory of names and binding. Inform. and Comput.,
186:165–193, 2003.

[7] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Confluence of orthogonal nominal rewriting
systems revisited. In Proc. 26th RTA, volume 36 of LIPIcs, pages 301–317, 2015.

[8] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoret. Comput. Sci., 323:473–497,
2004.

5

	Introduction
	Atom Identity Solving
	Atomic Equality Solving Procedure
	Freshness Constraint Solving Procedure
	Equivariant Unification Procedure
	Correctness of the Procedure
	Conclusion

