A Rule-Based Procedure for Equivariant Nominal
Unification™

Takahito Aoto! and Kentaro Kikuchi?

! Faculty of Engineering, Niigata University
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University
kentaro@nue.riec.tohoku.ac. jp

Abstract

Nominal rewriting is a rewriting formalism that deals with variable binding. An equivariant nominal
unification is a basic ingredient of nominal rewriting for computing rewrite steps and critical pairs. We
present a rule-based procedure for the equivariant nominal unification.

1 Introduction

Rewriting captures various computational aspects in equational reasoning. Higher-order rewrit-
ing deals with rewriting of expressions with higher-order functions and/or variable binding. The
nominal approach [5, 6] is a novel approach to deal with variable binding and a-equivalence—
unlike other approaches, it incorporates permutations and freshness conditions on variables
(atoms) as basic ingredients. Nominal rewriting [3, 4] is a formalism of rewriting based on the
nominal approach.

A basic ingredient of nominal rewriting is a computation of rewrite step, i.e. to compute a
term ¢ such that A F s =g t or even (representatives of) all ¢ such that A s —x t, from a
given nominal rewrite system R, a freshness context A and a term s. The main challenge here
is to find suitable 7 and o such that A+ V™o and A & s|, =, {70, when fixing VF I —>reR
and a position p in s. The problem is known to be an instance of equivariant nominal unification
[2]. The equivariant nominal unification is also necessary for computing critical pairs which is
a basic component for developing the Knuth-Bendix completion procedure.

In [2], an equivariant nominal unification procedure is given. In this paper, we consider a
framework of equivariant nominal unification which is simpler than [2], and present an alter-
native equivariant nominal unification procedure, which is fully presented in a rule-based form.
In what follows, we will develop our procedure from a basic ingredient to a full procedure in a
step by step manner. Our procedure will be completed in Section 5 and a discussion on cor-
rectness will be postponed until Section 6. We refer to [3, 4, 7] for basic notions and notations
on nominal terms. Familiarity with nominal unification [8] is assumed from Section 5.

2 Atom Identity Solving

We fix a countably infinite set A = {a,b,c,...} of atoms ranged over by a,b,c,... and a
countably infinite set X4 of atom variables ranged over by A, B,.... Elements of AU X, are
atom expressions ranged over by «,f,.... Atom equations are of the form a ~ 8 and atom
disequations are of the form a % 8 where a ~ 8 and § ~ a (~ € {=, #}) are identified. An

*This work is partially supported by JSPS KAKENHI (Nos. 15K00003, 16K00091).



A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

atom identity problem is a set of atom equations and atom disequations. The atom identity
solving procedure ProcAtomIdent, consists of the following derivation rules where a lower set
is derived from an upper set.

{a#atWE {a~b}WUE

{a=alWE {aaéb}EdEa

E g e#h T T a#b
{A=BIWE
A
AssompA 77

Here, W denotes the disjoint union, and F[3/A] denotes the constraints obtained by replacing
all occurrences of A in E by 8. A solved form F is either L or a set of disequations of the
form A % (8, and assignments of the form A — a where A does not occur elsewhere in E. The
intended meaning is that ~ (%) is an equality (disequality) on atoms and that atom variables
are instantiated by atoms.

We now also consider a countably infinite set Xp of permutation variables ranged over by
P,Q.... An expression of the form P - « is a primitive atomic expression. We now extend the
atom identity problems to allow also the form P-a ~ 5 (~ € {=, %}). The following derivation
rules are added to ProcAtomIdenty:

{Pax=p}WE {Pa#p}WE
{P:a— B}UE {P:a— A A#BIWUE
{PrampiuwE {P:a' = pBtyE
B~ UE P:a—pekFkE fa~a}UE P:a— ek
E P:a—pB,P:a/—»pB €k E P:a—fB,P:d =3 e€F

(B#BYUE a#d €EB#PEE {akd}UE B#B E€Bad ¢E

where in the second derivation rule, A is a fresh atom variable. The result is the (full) atom
identity solving procedure ProcAtomIdent. Then a solved form E (# 1) can also contain
constraints of the form P : a — (. The intended meaning is that a permutation is a (finite)
bijection on A, P - « is an application, and P : a — 3 is a constraint on P such that P maps
a to .

3 Atomic Equality Solving Procedure

Atomic expressions and permutation expressions are generated by the following grammar in a
mutually recursive way:

atomic erpression: vuwe&y = Il (moderated atom expression)
permutation expression: I,V e&p = P (permutation-variables)

| Id (identity)

[(vw) (swap)

|IIo¥ (composition)

| T  (inverse)

Here we have the following new constructs “Id”, “(, )7, “o” and “~!”. The names of the
construction suggests the indented meaning. For example, we have (((PoQ)~!-A) B) € £p and



A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

(Po@Q)™'-A) B)-c e &a. Clearly, a primitive atomic expression is an atomic expression. An
atomic (dis)equality is a (dis)equation of the form IT-a ~ IT'- 8, and a set of atomic (dis)equalities
is an atomic equality problem. The atomic equality solving procedure ProcAtomEq consists of
the following derivation rules:

{Illa~1I""BWE {Pv~pBlWE {ldv~ B} W E
{Illa~ AT~ AYUFE {va,P-A~6}UEU¢XAUA {v~BIUE
{0 o)w~ B} W E {0 v)w~ B W E {0 o)w~ B} W E
{vgw,v' #w,w~pFUE {vmw,v' ~FtUE {v~w,v~B}UE
{MToll')w ~B}WE {I-tw~BIWE
(Mw~ATLA~BIUE {If~Aw~AJUE

In the first two and the last two derivation rules, A is a fresh atom variable. This procedure
non-deterministically reduces an atomic equality problem to an atom identity problem, which
in turn given to the procedure ProcAtomIdent.

4 Freshness Constraint Solving Procedure
We now fix a countably infinite set X of term wariables ranged over by X,Y,.... A nominal

signature X is a set of function symbols ranged over by f,g,.... Term expressions are given by
the following grammar:

term expression: S, T €&p = v (atomic expressions)
| 1. X (moderated term-variables)
| [v]T (abstraction)
| (f T) (function applications)
‘ <T13 s 7Tn> (tuples)

A freshness constraint expression is a pair v#1 of v € E4 and T € Ep. An freshness constraint
problem is a finite set of freshness constraint expressions. The freshness constraint solving
procedure ProcFreshCnstr consists of the following derivation rules:

{v#w} W P {v#II. X} & P {v#[w|T}w P

{v#¢w}UP (It~ A A#X}IUP {vew}UP
{v#w]T} W P {v#f TtWP {v#(Th,...,T)} WP
{v#T}U{v#£w}UP {v#T}UP {v#Ty,...,v#T,} UP

In the second rule, A is a fresh atom variable. Permutation action II-v € £4 on an atomic
expression v by permutation IT used in the second rule is given by IT-(IT"-«) = (Il o IT')-cv. This
procedure non-deterministically reduces a freshness constraint problem to an atomic equality
problem supplemented with primitive freshness constraints of the form A#X. The result is
given to the procedure ProcAtomEq, where any primitive freshness constraint is omitted except
that any atom variable A in A#X needs to be updated accordingly by the operation [3/A].



A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

5 Equivariant Unification Procedure

A permutation action IT-7" € E7 on a term expression T' by II is given by the following rules:

v = I I()T) = [T](I17T)
I(II'X) = (Ioll')-X I(f7) = fIT
I(Ty,...,T,) = (IITy,...,11.T,,)

Here, the rhs of the first rule is given by the permutation action on an atomic expression.

A substitution is a mapping o : X — Er with a finite domain {X € X | o(X) # X}. A
substitution o such that o(X) =T with domain {X} is written as {X +— T'}. The application
of a substitution on term expressions is given by

vo = W (wTYo = [|(To)
(II-X)o = Il.o(X) (fT)e = f(To)
(Th,...,Tp)o = {(Tho,...,Tho)

Here, rhs of the second rule is given by the permutation action (on a term expression).

An ac-equivalence constraint is a pair S =, T of S,T € Er. An equivariant unification
problem (EUP) is a finite set of a-equivalence constraints. The equivariant unification procedure
ProcEqvUnif comnsists of the following derivation rules:

{IIL.X ~o X} W E, o)

{T ~o mX}WE, o)

{#(X,ILI)} U E, 0)

{[v]S mo [W|T}WE, o)
{v~=w,S~, THUE, o)

E(X o m WT] (X o r  Tjog) 000

{[v]S = [W]T} W E, o)
{v#w,S =, (vw)T,v#T}UE, o)

({f S~a fTIWE,0)
{S~aT}UE,0)

({(S1,...,8n) ~q (T1,...., TR)} WE, o)
({S1 =~ T1,..., S0 =a Th} UE,c)

Here X(T') denotes the set of term variables in a term expression 7. This procedure starts
with a pair of an EUP and the identity substitution. This procedure non-deterministically
generates a pair of the union of a freshness constraint problem and an atomic equality problem
supplemented with additional constraints of the form #(X,II,II'), and a substitution. The
former is given to the procedure ProcFreshCnstr, where freshness constraints are reduced to
atomic equality problem. The constraints of the form #(X, I, II') is untouched except that any
atom variable A in II, I needs to be updated accordingly by the operation [5/A]. All in all,
the procedure ProcEqvUnif non-deterministically generates an answer constraint, which is a
finite set of expressions of the following forms:

A= v|Pia—BlazB| X —T|a#X | #(X,11,1T)

where constraints of form X +— T is obtained from the substitution part of ProcEqvUnif. The
set of all answer constraints generated by ProcEqvUnif from given EUP C is a solution of the
EUP, which is denoted by Sol(C).

6 Correctness of the Procedure

The sets of nominal terms and permutations are denoted by 7 and P, respectively. An instan-
tiation is a pair 6 = (64,0p) of mappings 64 : X4 — A and 0p : Xp — P. For each II € Ep,

4



A Rule-Based Equivariant Unification Procedure Aoto and Kikuchi

v € Ea, S € Ep, their interpretations [II]y € P, [v]s € A, [S]e € T by an instantiation 6 are
defined by the following:

[Ple = 0p(P) [Tale = [H]e-[a]e [ale = a
Iidly = Id [MI-X]p = []e-X [Ale = 64(A)
[(vw)le = ([v]o [w]o) [WTle = [[v]el[TTe
[lToW]p = [Mfgo[¥]e [fTle = [T
HH71H9 = [[H]]Q_l H<T1a"'7Tn>]]9 = <[[T1]]97""HTH]]9>

Note here that “Id” etc. in the rhs’s of the definitions are not constructs but meta-operations.
For example, if we take 0p(P) = (a b), 0p(Q) = (b c) and 04(A) = a, 04(B) = b then we have
[(Po@)~"-A) B)]p=(cb) € P, [(PoQ)'-A) B)-cJ]op=be Aand [[(PoQ)"!-A) B):
E (P X, Q- c))]o = [b](£ ((ab)- X,b)) € T.

We put [v#T]e = [v]e#[T]e and [S =o T]o = [S]o =a [T]e.- A model of an EUP
C ={7,...,7n} is a triple (,0,A) of an instantiation 6, a substitution o and a freshness
context A such that A F [y;]eo for all 1 < i < n. We write (§,0,A) = C if (A,0,A) is a
model of C. A triple (f,0,A) is a model of an answer constraint S, written as (f,0,A) = S,
if 04(A) = [v]p for any A — v € S, 0p(P)([a]s) = [Blo for any P: a— S € S, [a]o # [Blo
forany a % 8 € S, 0(X) =[T]p for all X — T € S, A F [a]p#Xo for all a#X € S, and
Al a#Xo for any a € ds([H]g, [II']g) and #(X,ILIT") € S.

Now, the correctness of our equivariant unification procedure is stated as follows.

Theorem 1. For a given EUP C, ProcEqvUnif computes a finite set M = Sol(C) of answer
constraints such that, for any model (0,0,A), (8,0,A) =C iff 3§ € M. (6,0,A) = S.

7 Conclusion

In this paper, we have given a rule-based equivariant nominal unification procedure. To the
best of our knowledge, such a rule-based procedure has not been reported for the equivariant
nominal unification. We anticipate that our rule-based procedure is helpful to give a correctness
proof easy to understand and suitable for formal verification. Our procedure has been used to
implement a confluence prover for nominal rewriting [1].

References

[1] T. Aoto and K. Kikuchi. Nominal confluence tool. In Proc. 8th IJCAR, LNCS. Springer-Verlag,
2016. To appear.

[2] J. Cheney. Equivariant unification. J. of Automated Reasoning, 45:267-300, 2010.

[3] M. Ferndndez and M. J. Gabbay. Nominal rewriting. Inform. and Comput., 205:917-965, 2007.

[4] M. Ferndndez, M. J. Gabbay, and I. Mackie. Nominal rewriting systems. In Proc. 6th PPDP, pages
108-119. ACM Press, 2004.

[6] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Comput., 13:341-363, 2002.

[6] A. M. Pitts. Nominal logic, a first order theory of names and binding. Inform. and Comput.,
186:165-193, 2003.

[7] T. Suzuki, K. Kikuchi, T. Aoto, and Y. Toyama. Confluence of orthogonal nominal rewriting
systems revisited. In Proc. 26th RTA, volume 36 of LIPIcs, pages 301-317, 2015.

[8] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoret. Comput. Sci., 323:473-497,
2004.



	Introduction
	Atom Identity Solving
	Atomic Equality Solving Procedure
	Freshness Constraint Solving Procedure
	Equivariant Unification Procedure
	Correctness of the Procedure
	Conclusion

