
Confluence Competition 2015

Takahito Aoto1, Nao Hirokawa2, Julian Nagele3,
Naoki Nishida4, and Harald Zankl3

1 Tohoku University, Japan
2 JAIST, Japan

3 University of Innsbruck, Austria
4 Nagoya University, Japan

Abstract. Confluence is one of the central properties of rewriting. Our
competition aims to foster the development of techniques for prov-
ing/disproving confluence of various formalisms of rewriting automatically.
We explain the background and setup of the 4th Confluence Competition.

1 Introduction

Confluence (Figure 1) provides a general notion of•

• •

•

∗ ∗

∗ ∗

Fig. 1: Confluence

determinism and has been conceived as one of the cen-
tral properties of rewriting [1]. Confluence has been in-
vestigated in many formalisms of rewriting such as first-
order rewriting, lambda-calculi, higher-order rewriting,
constrained rewriting, conditional rewriting, etc. More
precisely, a rewrite system is a set of rewrite rules, and
for each rewrite system R, rewrite steps s →R t are
associated. A rewrite system R is said to be confluent
if for any t1 R

∗←− t0
∗−→R t2 there exists t3 such that

t1
∗−→R t3 R

∗←− t2, where
∗→R is the reflexive transitive closure of→R. The notions

of rewrite rules, associated rewrite steps, and terms to be rewritten vary from one
formalism to another. Confluence is also related to many important properties of
rewriting such as the unique normal form property, ground confluence, etc.

The task of our competition is to foster the development of techniques for
proving/disproving confluence automatically by setting up a dedicated and fair
competition among confluence proving/disproving tools. The 4th Confluence
Competition (CoCo 2015)5 runs live during the 4th International Workshop on
Confluence (IWC 2015) collocated with the 25th International Conference on
Automated Deduction (CADE-25) in Berlin, Germany.

5 http://coco.nue.riec.tohoku.ac.jp

http://coco.nue.riec.tohoku.ac.jp


2 T. Aoto et al.

TRS:

{
+(0, y) → y, sum(nil) → 0

+(s(x), y) → s(+(x, y)), sum(cons(x, ys)) → +(x, sum(ys))

}

CTRS:


+(0, y) → y

+(s(x), y) → s(+(x, y))

fib(0) → pair(s(0), 0)

fib(s(x)) → pair(w, y) ⇐ fib(x) = pair(y, z), +(y, z) = w


HRS:

{
map (λn. f n) nil → nil
map (λn. f n) (cons x xs) → cons (f x) (map (λn. f n) xs)

}
Fig. 2: Three different formalisms of rewrite systems in CoCo 2015.

2 Categories

Since different formalisms capture different confluence problems and techniques
for confluence proving, the competition is separated into several categories.
Categories are divided into competition categories and demonstration categories.

Demonstration categories are a novelty of CoCo 2015. These categories are
one-time events for demonstrating new attempts and/or merits of particular
tools. Demonstration categories can be requested until 2 months prior to the
competition.

In contrast to demonstration categories, competition categories are not only
run in a single competition but also in future editions of the confluence com-
petition. Competition categories can be requested until 6 months prior to the
competition, in order to allow organizers to make a decision on the framework
and semantics of the rewriting formalism and the input format of the problems.
The following 4 competition categories are run in CoCo 2015. See Figure 2 for
examples of the different rewriting formalisms.

TRS category This is a category for first-order term rewrite systems. The
framework of first-order term rewrite systems is most fundamental in the
theory of term rewriting (e.g. [1]).

CTRS category This is a category for conditional term rewriting. Conditional
term rewriting allows to deal with conditions whose evaluation is defined
recursively using the rewrite relation. Incorporation of conditional expressions
is fundamental from the point of views of universal algebra (quasi-variety) and
of functional programming. Depending on the interpretation of the conditions,
3 condition types are considered—namely, semi-equational, join and oriented
types. We refer to the textbook [3] for details.

HRS category Many expressive formal systems such as systems of predicate
logics, λ-calculi, process calculi, etc. need variable binding. Higher-order
rewriting is a framework that extends first-order term rewriting by a binding
mechanism. Various formalisms of higher-order rewriting have been proposed
in the literature. This category deals with one of the most classical frameworks
of higher-order rewriting, namely higher-order rewriting systems [2].



Confluence Competition 2015 3

number of number of
categoriestools tool authors

CoCo 2012 4 8 TRS/CPF
CoCo 2013 4 10 TRS/CPF
CoCo 2014 7 15 TRS/CTRS/CPF

Fig. 3: Statistics in the previous competitions.

rewrite system
(.trs)

confluence tool


YES if confluence is proved

NO if non-confluence is proved

MAYBE otherwise

Fig. 4: Input and output scheme of a confluence tool.

CPF category This category is for the certification of confluence proofs based
on interactive theorem provers. Here confluence tools must produce machine-
checkable proofs which are checked by trustable certifiers in a second step.

In Figure 3, we list statistics and categories of the previous competitions. The
HRS category has been incorporated for the first time in CoCo 2015.

3 Problems and Evaluation Process

We maintain a database of confluence problems (Cops), dealing with the three
rewriting formalisms reflected in the competition categories. The community can
submit problems prior to the competition. For the competition, only problems
from the literature are considered, where this family collects examples from the
literature (articles, papers, technical notes, and so on) dealing with confluence,
avoiding test examples generated automatically or tend to have a similar structure.
The actual problem sets for the competition are selected randomly from these
problems considering the time balance. For the demonstration categories, the
participants are requested to prepare the problems for the competition.

Figure 4 shows the input and output scheme required for tool participants. In
the competition a set of confluence problems is submitted to each participating
tool. Each tool is supposed to answer whether the given rewrite system is confluent
or not. Tools must be able to run on the designated execution platform and
read problems as input. The output of the tools must contain an answer in the
first line followed by some proof argument understandable for human experts.
Valid answers are YES (the input is confluent) and NO (the input is not confluent).
Any other answer (such as MAYBE) is interpreted as the tool could not determine
the status of the input. The timeout for each problem is set to 60 seconds for
all categories. Every problem in the CTRS category is classified by the pair of
a condition type (oriented, join, semi-equational), and a type of CTRS (type
1, 2, 3, or 4). A tool for the CTRS category should output UNSUPPORTED in



4 T. Aoto et al.

Fig. 5: LiveView of CoCo 2014.

place of YES/NO for input CTRSs in classes that the tool does not support. The
unsupported classes of each tool must be declared at the time of registration. For
the CPF category, each participant should output certifiable proofs as well as the
result of certification: YES if confluence proof is certified and NO if non-confluence
proof is certified.

The score is computed in percent of solved vs. supported problems (i.e. number
of YES/NO answers vs. total number of UNSUPPORTED answers). In case of a draw
there might be more winners. The tool with the maximal score wins. An answer
is plausible if it was not falsified (automatically or manually). A tool with at
least one non-plausible answer cannot be a winner.

4 Competition Platform and LiveView

The competition runs on a dedicated high-end cross-community competition
platform StarExec [4]. The progress of the live competition is shared with the
audience visually through the LiveView tool which interacts with StarExec. A
screenshot of the LiveView is shown in Figure 5.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

2. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoretical
Computer Science 192(1), 3–29 (1998)

3. Ohlebusch, E.: Advanced Topics in Term Rewriting Systems. Springer (2002)
4. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: a cross-community infrastructure for

logic solving. In: Proc. 7th IJCAR. LNAI, vol. 8562, pp. 367–373 (2014)


	Confluence Competition 2015

