
Automated Proofs of Unique Normal Forms
w.r.t. Conversion for Term Rewriting Systems

Takahito Aoto1 and Yoshihito Toyama2

1 School of Natural Sciences, Niigata University, JAPAN
aoto@ie.niigata-u.ac.jp

2 RIEC, Tohoku University, JAPAN
toyama@riec.tohoku.ac.jp

Abstract. The notion of normal forms is ubiquitous in various equiva-
lent transformations. Confluence (CR), one of the central properties of
term rewriting systems (TRSs), concerns uniqueness of normal forms. Yet
another such property, which is weaker than confluence, is the property
of unique normal forms w.r.t. conversion (UNC). Recently, automated
confluence proof of TRSs has caught attentions; some powerful conflu-
ence tools integrating multiple methods for (dis)proving the CR property
of TRSs have been developed. In contrast, there have been little efforts
on (dis)proving the UNC property automatically yet. In this paper, we
report on a UNC prover combining several methods for (dis)proving the
UNC property. We present an equivalent transformation of TRSs pre-
serving UNC, as well as some new criteria for (dis)proving UNC.

1 Introduction

The notion of normal forms is ubiquitous in various equivalent transformations—
normal forms are objects that cannot be transformed further. A crucial issue
around the notion of normal forms is that whether they are unique so that
normal forms (if exist) can represent the equivalence classes of objects. For this,

the notion of confluence (CR), namely that s
∗← ◦ ∗→ t implies s

∗→ ◦ ∗← t

for all objects s and t, is most well-studied. Here,
∗→ is the reflexive transitive

closure of the equivalent transformation→, and ◦ stands for the composition. In
term rewriting, various methods for proving confluence of term rewriting systems
(TRSs) have been studied (see e.g. slides of [20] for a survey). Yet another such
a property is the property of unique normal forms w.r.t. conversion (UNC)3,

namely that two convertible normal forms are identical, i.e. s
∗↔ t with normal

forms s, t implies s = t. In term rewriting, famous examples that are UNC but not
CR include TRSs consisting of S,K,I-rules for combinatory logic supplemented
with various pairing rules [13, 22], whose non-CR have been shown in [12].

3 The uniqueness of normal forms w.r.t. conversion is also often abbreviated as UN
in the literature; here, we prefer UNC to distinguish it from a similar but different
notion of unique normal forms w.r.t. reduction (UNR), following the convention
employed in CoCo (Confluence Competition).

2 T. Aoto and Y. Toyama

It is undecidable whetherR is UNC for a given TRSR in general. However, it
is known that the UNC property is decidable for left-linear right-ground TRSs [6]
and for shallow TRSs [17]. Another class for which the UNC property is decidable
is terminating TRSs, for which the CR property and the UNC property coincide
(e.g. [7]). Some classes of TRSs having the UNC property are also known: non-ω-
overlapping TRSs [10] and non-duplicating weight-decreasing joinable TRSs [21].
Another important topic on the UNC property is modularity. It is known that the
UNC property is modular for persistent decomposition [2] and layer-preserving
decomposition [1]. These results allow us to use the divide-and-conquer approach
for (dis)proving the UNC property. Compared to the CR property, however, not
much has been studied on the UNC property in the field of term rewriting.

Recently, automated confluence proof of TRSs has caught attentions lead-
ing to investigations of automatable methods for (dis)proving the CR property
of TRSs; some powerful confluence tools have been developed as well, such as
ACP [3], CSI [14], Saigawa [11] for TRSs, and also tools for other frameworks
such as conditional TRSs and higher-order TRSs. This leads to the emergence
of the Confluence Competition (CoCo)4, yearly efforts since 2012. In contrast,
there have been little efforts on (dis)proving the UNC property automatically.
Indeed, there are few tools that are capable of (dis)proving the UNC property;
furthermore, only few UNC criteria have been elaborated in these tools.

In this paper, we report on a UNC prover comprising multiple methods for
(dis)proving the UNC property and integrating them in a modular way. We
present new automated methods to prove or disprove the UNC property; these
methods enabled our tool to win the UNC category of CoCo 2018.

The rest of the paper is organized as follows. After introducing necessary
notions and notations in Section 2, we first revisit the conditional linearization
technique for proving UNC, and obtain new UNC criteria based on this approach
in Section 3. In Section 4, we present a slightly generalized version of the critical
pair criterion presented in the paper [21], and report an automation of the cri-
terion. In Section 5, we present a new method for proving or disproving UNC.
We show an experiment of the presented methods in Section 6. In Section 7,
we report our prover ACP which supports the presented methods and integrates
them based on the modularity results. Section 8 concludes.

2 Preliminaries

We now fix notions and notations used in the paper. We assume familiarity with
basic notions in term rewriting (e.g. [4]).

We use t to denote the multiset union and N the set of natural numbers.
A sequence of objects a1, . . . , an is written as a. Negation of a predicate P is
denoted by ¬P . The composition of relation R and S is denoted by R ◦ S.
Let → be a relation on a set A. The reflexive transitive (reflexive, symmetric,

equivalent) closure of the relation → is denoted by
∗→ (resp.

=→, ↔,
∗↔). The set

4 http://project-coco.uibk.ac.at/

Automated Proofs of UNC 3

NF of normal forms w.r.t. the relation → is given by NF = {a ∈ A | a → b for
no b ∈ A}. The relation → has unique normal forms w.r.t. conversion (denoted

by UNC(→)) if a
∗↔ b and a, b ∈ NF imply a = b. The relation → is confluent

(denoted by CR(→)) if
∗← ◦ ∗→ ⊆ ∗→ ◦ ∗←. When we consider two relations →1

and →2, the respective sets of normal forms w.r.t. →1 and →2 are denoted by
NF1 and NF2. The following proposition, which is proved easily, is a basis of the
conditional linearization technique, which will be used in Sections 3 and 4.

Proposition 1 ([13, 22]). Suppose (1)→0 ⊆ →1, (2) CR(→1), and (3) NF0 ⊆
NF1. Then, UNC(→0).

The set of terms over the set F of fixed-arity function symbols and denumer-
able set V of variables is denoted by T(F ,V). The set of variables in a term t is
denoted by V(t). A term t is ground if V(t) = ∅. We abuse the notation V(t) and
denote by V(e) the set of variables occurring in any sequence e of expressions.
The subterm of a term t at a position p is denoted by t|p. The root position
is denoted by ε. A context is a term containing a special constant � (called
hole). If C is a context containing n-occurrences of the hole, C[t1, . . . , tn]p1,...,pn
denotes the term obtained from C by replacing holes with t1, . . . , tn at the po-
sitions p1, . . . , pn. Here, subscripts p1, . . . , pn may be abbreviated if it can be
remained implicit. The expression s[t1, . . . , tn]p1,...,pn denotes the term obtained
from s by replacing subterms at the positions p1, . . . , pn with terms t1, . . . , tn
respectively. We denote by |t|x the number of occurrences of a variable x in
a term t. Again, we abuse the notation |t|x and denote by |e|x the number of
occurrences of a variable x in any sequence of expressions e. A term t is linear
if |t|x = 1 for any x ∈ V(t). A substitution σ is a mapping from V to T(F ,V)
with finite dom(σ) = {x ∈ V | σ(x) 6= x}. Each substitution is identified with its
homomorphic extension over T(F ,V). For simplicity, we often write tσ instead
of σ(t). A most general unifier σ of terms s and t is denoted by mgu(s, t).

An equation is a pair 〈l, r〉 of terms, which is denoted by l ≈ r. When we
do not distinguish the lhs and rhs of the equation, we write l ≈̇ r. We identify
equations modulo renaming of variables. For a set or sequence Γ of equations, we
denote by Γσ the set or the sequence obtained by replacing each equation l ≈ r
by lσ ≈ rσ. An equation l ≈ r satisfying l /∈ V and V(r) ⊆ V(l) is a rewrite rule
and written as l → r. A rewrite rule l → r is linear if l and r are linear terms;
it is left-linear (right-linear) if l (resp. r) is a linear term. A rewrite rule l → r
is non-duplicating if |l|x ≥ |r|x for any x ∈ V(l). A term rewriting system (TRS,
for short) is a finite set of rewrite rules. A TRS is linear (left-linear, right-linear,
non-duplicating) if so are all rewrite rules. A rewrite step of a TRS R (a set Γ
of equations) is a relation →R (resp. ↔Γ) over T(F ,V) defined by s →R t iff
s = C[lσ] and t = C[rσ] for some l→ r ∈ R (resp. l ≈̇ r ∈ Γ) and context C and
substitution σ. The position p such that C|p = � is called the redex position of
the rewrite step, and we write s→p,R t to indicate the redex position explicitly.
A rewrite sequence is (finite or infinite) consecutive applications of rewrite steps.
A rewrite sequence of the form t1 R← t0 →R t2 is called a local peak.

Let l1 → r1 and l2 → r2 be rewrite rules such that V(l1) ∩ V(l2) = ∅. Let
σ = mgu(l1, l2|p) with l2|p /∈ V. A local peak l2[r1]pσ p,R← l2σ →ε,R r2σ is

4 T. Aoto and Y. Toyama

called a critical peak of l1 → r1 over l2 → r2, provided that p 6= ε or (l1 → r1) 6=
(l2 → r2). The pair 〈l2[r1]pσ, r2σ〉 is called a critical pair in R. It is overlay if
p = ε; it is inner-outer if p 6= ε. The set of (overlay, inner-outer) critical pairs
from rules in a TRS R is denoted by CP(R) (resp. CPout(R), CPin(R)).

Let l ≈ r be an equation and let Γ be a finite sequence of equations. An
expression of the form Γ ⇒ l ≈ r is called a conditional equation. Conditional
equations are also identified modulo renaming of variables. If l /∈ V, it is a
conditional rewrite rule and written as l→ r ⇐ Γ . The sequence Γ is called the
condition part of the rule.

A conditional rewrite rule l → r ⇐ Γ is linear (left-linear) if so are rewrite
rule l → r. A finite set of conditional rewrite rules is called a conditional term
rewriting system (CTRS, for short). A CTRS is linear (left-linear) if so are
all rules. A CTRS R is said to be of type 1 if V(Γ) ∪ V(r) ⊆ V(l) for all
l→ r ⇐ Γ ∈ R.

Let l1 → r1 ⇐ Γ1 and l2 → r2 ⇐ Γ2 be conditional rewrite rules such that
w.l.o.g. V(l1, r1, Γ1)∩V(l2, r2, Γ2) = ∅. Let σ = mgu(l1, l2|p) with l2|p /∈ V. Then
Γ1σ, Γ2σ ⇒ 〈l2[r1]pσ, r2σ〉 is called a conditional critical pair (CCP, for short),
provided that p 6= ε or (l1 → r1 ⇐ Γ1) 6= (l2 → r2 ⇐ Γ2). Here, Γ1σ, Γ2σ is the
juxtaposition of sequences Γ1σ and Γ2σ. It is overlay if p = ε; it is inner-outer
if p 6= ε. The set of (overlay, inner-outer) CCPs from rules in a CTRS R is
denoted by CCP(R) (resp. CCPout(R), CCPin(R)). A CTRS R is orthogonal if
it is left-linear and CCP(R) = ∅.

In this paper, we deal with semi-equational CTRSs. The conditional rewrite

step →R =
⋃
n∈N→

(n)
R of a semi-equational CTRS R is given via auxiliary

relations →(n)
R (n ≥ 0) defined like this: →(0)

R = ∅, →(n+1)
R = {〈C[lσ], C[rσ]〉 |

l → r ⇐ s1 ≈ t1, . . . , sk ≈ tk ∈ R,∀i (1 ≤ i ≤ k). siσ
∗↔R

(n)
tiσ)}. The rank of a

conditional rewrite step s→R t is the least n such that s→(n)
R t.

Let R be a TRS or CTRS. The set of normal forms w.r.t. →R is written as
NF(R). A (C)TRS R is UNC (CR) if UNC(→R) (resp. CR(→R)) on the set
T(F ,V). Let E be a set or sequence of equations or rewrite rules. We denote ≈E
the congruence closure of E . We write `E l ≈ r if l

∗↔E r. For sets or sequences
Γ and Σ of equations, we write `E Σ if `E l ≈ r for all l ≈ r ∈ Σ, and Γ `E Σ
if `E Γσ implies `E Σσ for any substitution σ.

A TRS R is said to be right-reducible if r /∈ NF(R) for all l → r ∈ R.
Although it is straightforward, we did not noticed the following claim having
appeared in the literature:

Proposition 2. Right-reducible TRSs are UNC.

Example 1 (Cops]126). LetR = {f(f(x, y), z)→ f(f(x, z), f(y, z))}. The state
of the art confluence tools fail to prove confluence of this example. However, it is
easy to see R is right-reducible, and thus, the UNC property is easily obtained
automatically.

Automated Proofs of UNC 5

3 Conditional linearization revisited

In this section, we revisit the conditional linearization technique.

3.1 Conditional linearization

A conditional linearization is a translation from TRSs to CTRSs which elimi-
nates non-left-linear rewrite rules, say f(x, x) → r, by replacing them with a
corresponding conditional rewrite rules, such as f(x, y)→ r ⇐ x ≈ y. Formally,
let l = C[x1, . . . , xn] with all variable occurrences in l displayed (i.e. V(C) = ∅).
Note here l may be a non-linear term and some variables in x1, . . . , xn may be
identical. Let l′ = C[x′1, . . . , x

′
n] where x′1, . . . , x

′
n are mutually distinct fresh

variables and let δ be a substitution such that δ(x′i) = xi (1 ≤ i ≤ n) and
dom(δ) = {x′1, . . . , x′n}. A conditional rewrite rule l′ → r′ ⇐ Γ is a conditional
linearization of a rewrite rule l → r if r′δ = r and Γ is a sequence of equations
xi ≈ xj (1 ≤ i, j ≤ n) such that x′i ≈Γ x′j iff x′iδ = x′jδ holds for all 1 ≤ i, j ≤ n,
where ≈Γ is the congruence closure of Γ . A conditional linearization of a TRS R
is a semi-equational CTRS (denoted by RL) obtained by replacing each rewrite
rule with its conditional linearization. We remark that any result of conditional
linearization is a left-linear CTRS of type 1.

Conditional linearization is useful for showing the UNC property of non-left-
linear TRSs. The key observation is CR(RL) implies UNC(R). For this, we use
Proposition 1 for →0 := →R and →1 := →RL . Clearly, →R ⊆ →RL , and thus
the condition (1) of Proposition 1 holds. Suppose CR(RL). Then, one can easily
show that NF(R) ⊆ NF(RL) by induction on the rank of conditional rewrite
steps. Thus, the condition (2) of Proposition 1 implies its condition (3). Hence,
CR(RL) implies UNC(R).

Now, for semi-equational CTRSs, the following confluence criterion is known.

Proposition 3 ([5, 15]). Orthogonal semi-equational CTRSs are confluent.

A TRS R is strongly non-overlapping if CCP(RL) = ∅. Hence, it follows:

Proposition 4 ([13, 22]). Strongly non-overlapping TRSs are UNC.

This proposition is subsumed by the UNC of non-ω-overlapping TRSs [10].

3.2 UNC by conditional linearization

We now give some simple extensions of Proposition 4 which are easily incorpo-
rated from [8], but does not fall within the class of non-ω-overlapping TRSs.
For this, let us recall the notion of parallel rewrite steps. A parallel rewrite
step s −→q R t is defined like this: s −→q R t iff s = C[l1σ1, . . . , lnσn] and
t = C[r1σ1, . . . , rnσn] for some rewrite rules l1 → r1, . . . , ln → rn ∈ R and
context C and substitutions σ1, . . . , σn (n ≥ 0). Let us write Γ `R u → v if
`R Γσ implies uσ →R vσ for any substitution σ. We define Γ `R u −→q R v,
etc. analogously.

The following notion is a straightforward extension of the corresponding no-
tion in [8, 19].

6 T. Aoto and Y. Toyama

Definition 1. A semi-equational CTRS R is parallel-closed if (i) Γ `R u −→q v

for any inner-outer CCP Γ ⇒ 〈u, v〉 of R, and (ii) Γ `R u −→q ◦ ∗← v for any
overlay CCP Γ ⇒ 〈u, v〉 of R.

We now come to our first extension of Proposition 4, which is proved in a
way very similar to the one for TRSs.

Theorem 1. Parallel-closed semi-equational CTRSs of type 1 are confluent.

Corollary 1. A TRS R is UNC if RL is parallel-closed.

Example 2. LetR = {@(@(@(S, x), y), z)→ @(@(x, z),@(y, z)),@(@(K,x), y)→
x, @(I, x)→ x, @(@(D,x), x)→ x, app(K,x)→ @(I, x), app(x,K)→ x }. Since
R is non-terminating, non-shallow, and non-right-ground, previous decidability
results for UNC does not apply. Furthermore, since R is overlapping and du-
plicating, previous sufficient criteria for UNC does not apply. Also, previous
modularity results for UNC does not properly decompose R. Note that the TRS
consisting of the first 4 rules is a famous non-confluent example ([12]); one can
prove that R is non-confluent in a similar way. We have CCPin(RL) = ∅ and
CCPout(RL) = {∅ ⇒ 〈@(I,K),K〉, ∅ ⇒ 〈K,@(I,K)〉}. Thus, RL is parallel-
closed, and from Corollary 1, it follows that R is UNC.

Next, we incorporate the strong confluence criterion of TRSs [8] to semi-
equational CTRSs in the similar way.

Definition 2. A semi-equational CTRS R is strongly closed if Γ `R u
∗→ ◦ =←

v and Γ `R u
=→ ◦ ∗← v for any CCP Γ ⇒ 〈u, v〉 of R.

Similar to the proof of Theorem 1, the following theorem is obtained in the
same way as in the proof for TRSs.

Theorem 2. Linear strongly closed semi-equational CTRSs of type 1 are con-
fluent.

Corollary 2. A TRS R is UNC if RL is linear and strongly closed.

We remark that the results of conditional linearization are not unique. Al-
though the rewrite relation →RL is independent of the results of conditional
linearization, the CCPs may be different depending on RL. Thus, the applica-
bility of Theorems 1 and 2 changes by the choice of RL. This is exhibited in the
next example, where the first 5 rules are from [8].

Example 3. Let

R =

H(F (x, y))→ F (H(R(x)), y) F (x,K(y, z)) → G(P (y), Q(z, x))
H(Q(x, y))→ Q(x,H(R(y))) Q(x,H(R(y)))→ H(Q(x, y))
H(G(x, y))→ G(x,H(y)) K(x, x) → R(x)
P (y) → C C → K(C,C)
F (x,R(y)) → G(C,Q(y, x))

 .

Automated Proofs of UNC 7

There are two variants of conditional linearization of the sixth rule, namely
K(x1, x2) → R(x1) ⇐ x1 ≈ x2 and K(x1, x2) → R(x2) ⇐ x1 ≈ x2. De-
pending on the choice of the variants, one obtains two kinds of CCP—namely,
〈F (x,R(y)), G(P (y), Q(z, x))〉 and 〈F (x,R(z)), G(P (y), Q(z, x))〉. The former is
strongly closed as F (x,R(y))→ G(C,Q(y, x)← G(P (y), Q(z, x)). On the other
hand, the latter is not. Actually, the CTRS obtained by the former linearization
is strongly closed, while the CTRS obtained by the latter linearization is not
strongly closed.

3.3 Automation

Even though proofs are rather straightforward, it is not at all obvious how the
conditions of Theorems 1 and 2 can be effectively checked.

Let R be a semi-equational CTRS. Let Γ ⇒ 〈u, v〉 be an inner-outer CCP
of R, and consider to check Γ `R u −→q v. For this, we construct the set
Red = {v′ | Γ `R u −→q v′} and check whether v ∈ Red . To construct the set
Red , we seek the possible redex positions in u. Suppose we found conditional
rewrite rules l1 → r1 ⇐ Γ1, l2 → r2 ⇐ Γ2 ∈ R and substitutions θ1, θ2 such that
u = C[l1θ1, l2θ2]. Then we obtain u −→q C[r1θ1, r2θ2] if `R Γ1θ1 and `R Γ2θ2, i.e.

s
∗↔R t for any equation s ≈ t in Γ1θ1 ∪ Γ2θ2. Now, for checking Γ `R u −→q v,

it suffices to consider the case `R Γ holds. Thus, we may assume s′
∗↔R t′ for

any s′ ≈ t′ in Γ . Therefore, the problem is to check whether s′
∗↔R t′ for s′ ≈ t′

in Γ implies s
∗↔R t for any equation s ≈ t in Γ1θ1 ∪ Γ2θ2.

To check this, we use the following sufficient condition: s ≈Γ t for all s ≈
t ∈ Γ1θ1 ∪ Γ2θ2. Since congruence closure of a finite set of equations is recursive
(e.g. [4]), this approximation is indeed automatable.

Example 4. Let

R =

{
P (Q(x))→ P (R(x)) ⇐ x ≈ A Q(H(x))→ R(x)⇐ S(x) ≈ H(x)
R(x) → R(H(x))⇐ S(x) ≈ A

}
.

Then, we have CCP(R) = CCPin(R) = {S(x) ≈ H(x), H(x) ≈ A⇒ 〈P (R(x)),
P (R(H(x)))〉}. In order to apply the third rule to have P (R(x)) −→q R P (R(H(x))),

we have to check the condition S(x)
∗↔R A. This holds, since we can sup-

pose S(x)
∗↔R H(x) and H(x)

∗↔R A. This is checked by S(x) ≈Σ A, where
Σ = {S(x) ≈ H(x), H(x) ≈ A}.

4 Automating UNC proof of non-duplicating TRSs

In this section, we show a slight generalization of the UNC criterion of the
paper [21], and show how the criterion can be decided. First, we briefly capture
necessary notions and notations from the paper [21].

A left-right separated (LR-separated) conditional rewrite rule is l → r ⇐
x1 ≈ y1, . . . , xn ≈ yn such that (i) l /∈ V is linear, (ii) V(l) = {x1, . . . , xn} and

8 T. Aoto and Y. Toyama

Γ t {u ≈ v} R u ∼0 v Γ R t ∼0 t

Γ R t ∼i s

Γ R s ∼i t

Γ R s ∼i t Σ R t ∼j u

Γ tΣ R s ∼i+j u

Γ R s ∼i t

Γ R C[s] ∼i C[t]

Γ1 R u1 ∼i1 v1 · · · Γn R un ∼in vn⊔
j Γj R 〈u1, . . . , un〉 ∼k 〈v1, . . . , vn〉

k =
∑

j ij

Γ R s→i t

Γ R s ∼i t

Γ R 〈u1σ, . . . , unσ〉 ∼i 〈v1σ, . . . , vnσ〉
Γ R C[lσ]→i+1 C[rσ]

l→ r ⇐ u1 ≈ v1, . . . , un ≈ vn ∈ R

Fig. 1. Inference rules for ranked conversions and rewrite steps

V(r) ⊆ {y1, . . . , yn} (iii) {x1, . . . , xn} ∩ {y1, . . . , yn} = ∅, and (iv) xi 6= xj for
all 1 ≤ i, j ≤ n such that i 6= j. Here, note that some variables in y1, . . . , yn
can be identical. A finite set of LR-separated conditional rewrite rules is called
an LR-separated conditional term rewriting system (LR-separated CTRS, for
short). An LR-separated conditional rewrite rule l → r ⇐ x1 ≈ y1, . . . , xn ≈ yn
is non-duplicating if |r|y ≤ |y1, . . . , yn|y for all y ∈ V(r).

The LR-separated conditional linearization translates TRSs to LR-separated
CTRSs: Let C[y1, . . . , yn] → r be a rewrite rule, where V(C) = ∅. Here, some
variables in y1, . . . , yn may be identical. Then, we take fresh distinct n vari-
ables x1, . . . , xn, and construct C[x1, . . . , xn] → r ⇐ x1 ≈ y1, . . . , xn ≈ yn as
the result of the translation. It is easily seen that the result is indeed an LR-
separated conditional rewrite rule. It is also easily checked that if the rewrite rule
is non-duplicating then so is the result of the translation (as an LR-separated
conditional rewrite rule). The LR-separated conditional linearization RS of a
TRS R is obtained by applying the translation to each rule.

It is shown in [21] that semi-equational non-duplicating LR-separated CTRSs
are confluent if their CCPs satisfy some condition, which makes the rewrite
steps ‘weight-decreasing joinable’. By applying the criterion to LR-separated
conditional linearization of TRSs, they obtained a criterion of UNC for non-
duplicating TRSs. Note that rewriting in LR-separated CTRSs is (highly) non-
deterministic; even reducts of rewrite steps at the same position by the same
rule are generally not unique, not only reflecting semi-equational evaluation of
the conditional part but also by the V(l)∩V(r) = ∅ for LR-separated conditional
rewrite rule l → r ⇐ Γ . Thus, how to effectively check the sufficient condition
of weight-decreasing joinability is not very clear, albeit it is mentioned in [21]
that the decidability is clear.

For obtaining an algorithm for computing the criterion, we introduce ternary
relations parameterized by an LR-separated CTRS R and n ∈ N as follows.

Definition 3. The derivation rules for Γ R u ∼n v and Γ R u →n v are
given in Figure 1. Here, n ∈ N and Γ is a multiset of equations.

Intuitively, Γ R u ∼n v means that u
∗↔R v using the assumption Γ where

the number of rewrite steps is n in total (i.e. including those used in checking
conditions). Main differences to the relation ∼

Γ
in [21] are twofold:

Automated Proofs of UNC 9

1. Instead of considering a special constant •, we use an index of natural num-
ber. The number of • corresponds to the index number.

2. Auxiliary equations in Γ are allowed in our notation of Γ R u ∼n v (i.e.
not all equations in Γ need not be used). On the contrary, Γ in ∼

Γ
in [21]

does not allow auxiliary equations in Γ .

The former is useful to designing the effective procedure to check the UNC
criteria presented below. The latter is convenient to prove the satisfiability of
constraints on such expressions.

The following slightly generalizes the main result of [21].

Theorem 3. A semi-equational non-duplicating LR-separated CTRS R is weight-
decreasing joinable if for any CCP Γ ⇒ 〈s, t〉 of R, either (i) Γ R s ∼≤1 t, (ii)
Γ R s↔2 t, or (iii) Γ R s→i ◦ ∼j t with i+ j ≤ 2 and Γ R t→i′ ◦ ∼j′ s
with i′ + j′ ≤ 2.

Thus, non-duplicating TRSs R are UNC if all CCPs of RS satisfy some of
these (i)–(iii).

Thanks to our new formalization, decidability of the condition easily follows.

Theorem 4. The condition of Theorem 3 is decidable.

Proof. We show that each condition (i)–(iii) is decidable. Let Γ be a (finite)
multiset of equations, s, t terms, and s, t sequences of terms. The claim fol-
lows by showing the following series of sets are finite and effectively constructed
one by one: (a) SIM0(Γ, s) = {〈Σ, t〉 | Γ\Σ R s ∼0 t}, (b) SIM0(Γ, s) =
{〈Σ, t 〉 | Γ\Σ R s ∼0 t }, (c) RED1(Γ, s, t) = {Σ | Γ\Σ R s →1 t},
(d) SRS010(Γ, s, t) = {Σ | Γ\Σ R s ∼0 ◦ →1 ◦ ∼0 t}, (e) SIM1(Γ, s, t) =
{Σ | Γ\Σ R s ∼1 t}, (f) SIM1(Γ, s, t) = {Σ | Γ\Σ R s ∼1 t }, and (g)
RED2(Γ, s, t) = {Σ | Γ\Σ R s→2 t}. ut

Example 5. Let

R =

{
f(x, x) → h(x, f(x, b)) f(g(y), y)→ h(y, f(g(y), c(b)))
h(c(x), b)→ h(b, b) c(b) → b

}
Since R is non-terminating, non-shallow, and non-right-ground, previous decid-
ability results for UNC does not apply. Furthermore, since R is overlapping and
duplicating, previous sufficient criteria for UNC does not apply. Also, previous
modularity results for UNC does not properly decompose R. By conditional
linearization, we obtain

RS =

f(x1, x2) → h(x, f(x, b)) ⇐ x1 ≈ x, x2 ≈ x
f(g(y1), y2)→ h(y, f(g(y), c(b)))⇐ y1 ≈ y, y2 ≈ y
h(c(x), b) → h(b, b) c(b) → b

 .

We have an overlay CCP Γ ⇒ 〈h(x, f(x, b)), h(y, f(g(y), c(b)))〉, where Γ =
{(a) : y1 ≈ y, (b) : y2 ≈ y, (c) : g(y1) ≈ x, (d) : y2 ≈ x}. (Another one is its

10 T. Aoto and Y. Toyama

symmetric version.) Let s = h(y, f(g(y), c(b))) and t = h(x, f(x, b))). To check
the criteria of Theorem 3, we start computing SIM0(Γ, s) and SIM0(Γ, t). For
example, the former equals to

〈{(a), (b), (c), (d)}, h(y, f(g(y), c(b)))〉 〈{(b), (c), (d)}, h(y1, f(g(y), c(b)))〉
〈{(b), (c), (d)}, h(y, f(g(y1), c(b)))〉 〈{(b), (d)}, h(y, f(x, c(b)))〉
〈{(a), (c), (d)}, h(y2, f(g(y), c(b)))〉 〈{(a), (c), (d)}, h(y, f(g(y2), c(b)))〉
〈{(a), (c)}, h(x, f(g(y), c(b)))〉 〈{(a), (c)}, h(y, f(g(x), c(b)))〉
〈{(c), (d)}, h(y1, f(g(y2), c(b)))〉 〈{(c), (d)}, h(y2, f(g(y1), c(b)))〉
〈{(c)}, h(y1, f(g(x), c(b)))〉 〈{(c)}, h(x, f(g(y1), c(b)))〉
〈{(d)}, h(y2, f(x, c(b)))〉 〈∅, h(x, f(x, c(b)))〉

.

We now can check s ∼0 t does not hold by 〈Γ ′, t〉 ∈ SIM0(Γ, s) for no Γ ′.
To check Γ s →1 t, we compute RED1(Γ, s, t). For this, we check there
exist a context C and substitution θ and rule l → r ⇐ Γ ∈ RS such that
s = C[lθ] and t = C[rθ]. In our case, it is easy to see RED1(Γ, s, t) = ∅.
Next to check Γ s ∼1 t, we compute SRS010(Γ, s, t). This is done by, for
each 〈Γ ′, s′〉 ∈ SIM0(Γ, s), computing 〈Σ, t′〉 ∈ SIM0(Γ ′, t) and check there ex-
ists Σ ∈ RED1(Σ′, s′, t′). In our case, for 〈∅, h(x, f(x, c(b)))〉 ∈ SIM0(Γ, s) we
have 〈∅, t〉 ∈ SIM0(∅, t), and ∅ ∈ RED1(∅, h(x, f(x, c(b))), t). Thus, we know
h(x, f(x, c(b))) →1 h(x, f(x, b)). Hence, for these overlay CCPs, we have y1 ≈
y, y2 ≈ y, g(y1) ≈ x, y2 ≈ x R h(y, f(g(y), c(b))) ∼1 h(x, f(x, b)). We also
have CCPin(RS) = { ∅ ⇒ 〈h(b, b), h(b, b)〉}. For this inner-outer critical pair,
it follows that R h(b, b) ∼0 h(b, b) using 〈∅, h(b, b)〉 ∈ SIM0(∅, h(b, b)). Thus,
from Theorem 3, RS is weight-decreasing. Hence, it follows R is UNC. We re-
mark that, in order to derive R h(b, b) ∼0 h(b, b), we need the reflexivity rule.
However, since the corresponding Definition of ∼ in the paper [21] lacks the re-
flexivity rule, the condition of weight-decreasing in [21] (Definition 9) does not
hold for RS . A part of situations where the reflexivity rule is required is covered
by the congruence rule, and the reflexivity rule becomes necessary when there
exists a trivial critical pair such as above.

5 Equivalent transformation for UNC

In this section, we present a transformational approach for proving and disprov-
ing UNC.

5.1 Equivalent transformation and disproof

Firstly, observe that the conditional linearization does not change the input TRSs
if they are left-linear. Thus, the technique has no effects on left-linear rewrite
rules. But, as one can easily see, it is not at all guaranteed that left-linear TRSs
are UNC.

Now, observe that a key idea in the conditional linearization technique is
that the CR property of an approximation of a TRS implies the UNC property
of the original TRS. The first method presented in this section is based on

Automated Proofs of UNC 11

Addition Elimination

R
R∪ {l→ r} l /∈ NF(R), l

∗↔R r,V(r) ⊆ V(l)
R∪ {l→ r}

R l /∈ NF(R), l
∗↔R r

Reversing

R∪ {l→ r}
R ∪ {l→ l, r → l}

r /∈ NF(R∪ {l→ r}),V(l) ⊆ V(r)

Disproof-1 Disproof-2

R
⊥ l, r ∈ NF(R), l

∗↔R r, l 6= r
R
⊥ r ∈ NF(R), l

∗↔R r,V(r) 6⊆ V(l)

Fig. 2. Inference rules for equivalent transformation and disproof

the observation that one can also use the approximation other than conditional
linearization. To fit our usage, we now slightly modify Proposition 1 to obtain
the next two lemmas, whose proofs are easy.

Lemma 1. Suppose (1) →0 ⊆ →1 ⊆
∗↔0 and (2) NF0 ⊆ NF1. Then, UNC(→0)

iff UNC(→1).

Lemma 2. Suppose (1)
=↔0 =

=↔1 and (2) NF0 = NF1. Then, UNC(→0) iff
UNC(→1).

These lemmas are made into first three transformation rules in Figure 2.

Definition 4. Let R be a TRS. We write R; α if α is obtained by one of the
inference rules in Figure 2.

The next lemma immediately follows from Lemmas 1 and 2.

Lemma 3. Let R be a TRS and l→ r a rewrite rule.

1. Suppose l
∗↔R r and l /∈ NF(R). Then, UNC(R) iff UNC(R∪ {l→ r}).

2. Suppose r → l is a rewrite rule and r /∈ NF(R ∪ {l → r}). Then UNC(R ∪
{l→ r}) iff UNC(R∪ {l→ l, r → l}).

Applying Lemma 3 (1) to the Addition and Elimination rules, and Lemma 3 (2)
to the Reversing rules, we obtain:

Theorem 5. Let R be a TRS and suppose R ∗
; R′ 6= ⊥. Then, R′ is a TRS,

and UNC(R′) iff UNC(R).

Note that the relation ; is not well-founded; we will present some strategies
for automation in the next subsection. We next show the correctness of the
Disproof-1/2 rules.

Theorem 6. Let R be a TRS and suppose R ∗
; ⊥. Then ¬UNC(R).

12 T. Aoto and Y. Toyama

Proof. Then we have R ∗
; R′ ; ⊥ for some R′. From Theorem 5, we have

UNC(R′) iff UNC(R). Thus, it remains to show ¬UNC(R′). Suppose R′ ; ⊥
by Disproof-1. Then l

∗↔R′ r, l, r ∈ NF(R′), and l 6= r. By the definition of

UNC, R′ is not UNC. Suppose R′ ; ⊥ by Disproof-2. Then s
∗↔R′ t ∈ NF(R′)

and x ∈ V(t) \ V(s). Take a fresh variable y and let t′ = t{x := y}. Clearly, from

t ∈ NF(R′) we have t′ ∈ NF(R′). By t′
∗↔R′ s

∗↔R′ t, R′ is not UNC. ut

5.2 Automation

The correctness of equivalent transformation itself does not give us any hint
how to apply such transformations. Below, we give two procedures based on the
equivalent transformation.

First one employs the Reversing rule, the Elimination rule, and an ordering
> as a heuristic (not to loop).

Definition 5 (Rule reversing transformation). Let R be a TRS. We write
R ↪→ R′ if R′ = (R \ {l → r}) ∪ {l → l, r → l} for some l → r ∈ R such
that l < r, r /∈ NF(R) and r → l is a rewrite rule, or R′ = R \ {l → r} for
some l → r ∈ R such that l = r and l /∈ NF(R \ {l → r}). Any transformation

R ∗
↪→ R′ is called a rule reversing transformation.

It is easy to see that the relation ↪→ is well-founded, by comparing the num-
ber of increasing rules (i.e. l → r such that l < r) and the number of rules
lexicographically. The correctness follows from Theorem 5.

Theorem 7. Let R′ be a TRS obtained by a rule reversing transformation from
R. Then, UNC(R) iff UNC(R′).

Next, we consider constructing an approximation S of a TRS R by adding
auxiliary rules generated by critical pairs. To guide the procedure, we consider
two predicates ϕ and Φ such that the following confluence criterion holds:

Suppose that TRS S satisfies ϕ(S). If Φ(u, v) holds for all critical pairs
〈u, v〉 of S, then S has the CR property.

(A)

Multiple criteria in this form are known: one can take ϕ(S) and Φ(u, v) as
‘S is left-linear’ and ‘〈u, v〉 is development-closed’, respectively [16] and as ‘S
is linear’ and ‘〈u, v〉 is strongly closed’, respectively [8]. The idea is that if one
encounters a critical pair 〈u, v〉 for which Φ(u, v) does not hold, then (check
whether one can apply Disproof rules and) apply the equivalent transformation
so that Φ(u, v) is satisfied.

Definition 6 (UNC completion procedure).

Input: TRS R, predicates ϕ,Φ satisfying (A).
Output: UNC or NotUNC or Failure (or may diverge)

Step 1. Compute the set CP(R) of critical pairs of R.

Automated Proofs of UNC 13

Step 2. If Φ(u, v) for all 〈u, v〉 ∈ CP(R) and ϕ(R) then return UNC.
Step 3. Let S := ∅. For each 〈u, v〉 ∈ CP(R) with u 6= v for which Φ(u, v)
does not hold, do:
(a) If u, v ∈ NF(R), then exit with NotUNC.
(b) If u /∈ NF(R) and v ∈ NF(R), then if V(v) 6⊆ V(u) then exit with

NotUNC, otherwise update S := S ∪ {u→ v}.
(c) If v /∈ NF(R) and u ∈ NF(R), then if V(u) 6⊆ V(v) then exit with

NotUNC, otherwise update S := S ∪ {v → u}.
(d) If u, v /∈ NF(R) then find w such that u

∗→R w (v
∗→R w), and V(w) ⊆

V(v) (resp. V(w) ⊆ V(v)). If it succeeds then update S := S ∪ {v → w}.
Step 4. If S = ∅ then return Failure; otherwise update R := R ∪ S and go
back to Step 1.

Again, the correctness of the UNC completion procedure follows immediately
from Theorems 5 and 6.

Theorem 8. The UNC completion procedure is correct, i.e. if the procedure re-
turns UNC then UNC(R), and if the procedure returns NotUNC then ¬UNC(R).

Example 6. Let R = {a→ a, f(f(x, b), y)→ f(y, b), f(b, y)→ f(y, b), f(x, a)→
b}. Since R is non-terminating, non-shallow, and non-right-ground, previous
decidability results for UNC does not apply. Furthermore, since R is overlapping
and RL = R is non-confluent, previous sufficient criteria for UNC does not
apply. Also, previous modularity results for UNC does not properly decompose
R. Now, let us apply the UNC completion procedure to R using linear strongly
closed criteria for confluence. For this, take ϕ(R) as R is linear, and Φ(u, v) as

(u
∗→ ◦ =← v)∧(u

=→ ◦ ∗← v). In Step 3, we find an overlay critical pair 〈f(a, b), b〉,
for which Φ is not satisfied. Since f(a, b) is not normal and b is normal, we go
to Step 3(b). Thus, we update R := R ∪ {f(a, b) → b}. Now, the updated R
is linear and strongly closed (and thus, R is confluent). Hence, the procedure
returns UNC at Step 2.

6 Implementation and experiment

We have tested various methods presented so far. The methods used in our
experiment are summarized as follows.

(ω) UNC(R) if R is non-ω-overlapping.
(pcl) UNC(R) if RL is parallel-closed.
(scl) UNC(R) if R is right-linear and RL is strongly closed.
(wd) UNC(R) if RS is non-duplicating and weight-decreasing joinable.
(sc) UNC completion using strongly closed critical pairs criterion.
(dc) UNC completion using development-closed critical pairs criterion.
(rr) UNC(R) if R is right-reducible.
(cp) ¬UNC(R) by adhoc search of a counterexample for UNC(R).

14 T. Aoto and Y. Toyama

(rev) Rule reversing transformation, combined with other criteria above.

For the implementation of non-ω-overlapping condition, we used unification al-
gorithm over infinite terms in [9]. For (sc) and (dc), we approximate

∗→ by
the development step −→◦ (e.g. [16]) in Step 3(d). We employed as the heuristic
ordering > for (rev) the comparison in terms of size. For (cp), we use an adhoc
search based on rule reversing, critical pairs computation, and rewriting.

We tested on the 242 TRSs from the Cops (Confluence Problems) database5

of which no confluence tool has proven confluence nor terminating at the time
of experiment6. The motivation of using such testbed is as follows: If a confluent
tool can prove CR, then UNC is obtained by confluent tools. If R is terminating
then CR(R) iff UNC(R), and thus the result follows also from the result of
confluence tools. Thus, we here evaluate our UNC techniques on such testbed.

without (rev) (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp) all

YES 10 8 3 3 4/10/12 3/9/12 45 0 62
NO 0 0 0 0 24/49/59 24/49/59 0 68 87
YES+NO 10 8 0 0 28/59/71 27/58/71 45 68 149
timeout (60s) 0 0 0 0 13/20/53 15/23/70 0 0 –
time (min) 0 0 0 0 13/21/60 16/25/79 0 2 –

with (rev) (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp) all

YES 6 4 1 1 26/44/47 26/37/41 45 0 75
NO 0 0 0 0 25/52/60 25/53/61 0 60 84
YES+NO 6 4 1 1 51/96/107 51/90/102 45 60 159
timeout (60s) 0 0 0 3 14/19/47 14/19/60 0 0 –
time (min) 0 0 0 4 15/20/54 15/21/70 0 0 –

both (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp) all

YES+NO 10 8 3 3 53/102/112 52/96/106 45 68 171

Table 1. Test on presented criteria

In Table 1, we summarize the results. Our test is performed on a PC with
2.60GHz cpu with 4G of memory. The column headings show the technique
used. The number of examples for which UNC is proved (disproved) successfully
is shown in the row titled ’YES’ (resp. ’NO’). In the columns below (sc) and
(dc), we put l/n/m where each l, n,m denotes the scores for the 1-round (2-
rounds, 3-rounds) UNC completion. The columns below ’all ’ show the numbers
of examples succeeded in any of the methods.

The columns below the row headed ’with (rev)’ are the results for which
methods are applied after the rule reversing transformation. The columns below

5 Cops can be accessed from http://cops.uibk.ac.at/, which consists of 1137 problems
at the time of experiment.

6 This was obtained by a query ‘trs !confluent !terminating’ in Cops at the time
of experiment.

Automated Proofs of UNC 15

the row headed ’both’ show the numbers of examples succeeded by each tech-
nique, where the techniques are applied to both of the original TRSs and the
TRSs obtained by the rule reversing transformation.

3 rounds UNC completions (sc), (dc) with rule reversing are most effective,
but they are also the most time consuming. Simple methods (rr), (cp) are also
effective for not few examples. Although there is only a small number of exam-
ples for which criteria based on conditional linearization are effective, but their
checks are fast compared to the UNC completions. Rule reversing (rev) is only
worth incorporated for UNC completions. For other methods, the rule reversing
make the methods less effective; for methods (ω), (pcl), (scl) and (wd), this is
because the rule reversing transformation generally increases the number of the
rules. In total, the UNC property of the 171 problems out of 242 problems have
been solved by presented methods. The details of the experiment are found in
http://www.nue.ie.niigata-u.ac.jp/tools/acp/experiments/frocos19/.

7 Tool

ACP originally intends to (dis)prove confluence of TRSs [3]. ACP integrates
multiple direct criteria for guaranteeing confluence of TRSs; it also incorpo-
rates several divide-and-conquer criteria. We have extended it to also deal with
(dis)proving the UNC property of TRSs.

Like its confluence proving counterpart, ACP first tries to decompose the
UNC problem of the given TRS into those of smaller components. For this, one
can use the following modularity results on the UNC property, where we refer
to [3] for the terminology:

Proposition 5 ([2]). Suppose {R1, . . . ,Rn} is a persistent decomposition of
R. Then,

⋃
iRi is UNC if and only if so is each Ri.

Proposition 6 ([1]). Suppose {R1, . . . ,Rn} is a layer-preserving decomposi-
tion of R. Then,

⋃
iRi is UNC if and only if so is each Ri.

After possible decomposition, multiple direct criteria are tried for each com-
ponent. For the direct criteria, we have incorporated (ω), (pcl), (scl), (wd),
(rr), (cp) without rule reversing, and (sc)3 and (dc)3 with rule reversing. These
methods are tried one method after another. We also add yet another UNC check,
namely that after the Steps 1–3 of the UNC completion using development-closed
critical pairs criterion, the confluence check in ACP is performed.

Other tools that support UNC (dis)proving include CSI [14] which is a con-
fluence prover supporting UNC proof for non-ω-overlapping TRSs and a decision
procedure of UNC for ground TRSs (at the time of CoCo 20187), and FORT [18]
which implements decision procedure for first-order theory of left-linear right-
ground TRSs based on tree automata. Our new methods are also effective for
TRSs outside the class of non-ω-overlapping TRSs and that of left-linear right-
ground TRSs. We use the same testbed in the previous section, to compare our

7 The recent version of CSI had been extended with some other techniques.

16 T. Aoto and Y. Toyama

tool with the latest versions of CSI (ver. 1.2.2) and FORT (ver. 2.1), also test
the effect of the divide-and-conquer criteria. The result is shown in the Table 3.

ACP ACP(direct) CSI FORT

YES 83 83 86 38
NO 92 92 65 34
time 62m 62m 78m 2m

35

8

1 012

238

ACP

FORT

CSI

33

25

1 00

331

ACP

FORT

CSI

Table 2. Comparison of UNC tools

There is no example in the testbed that fails when decomposition techniques
are inactivated (ACP (direct)). For the next example, however, our tool succeeds
only if the decomposition techniques are activated.

Example 7. Let R = R1 ∪ R2, where R1 = {f(f(x, y), z)→ f(f(x, z), f(y, z))}
and R2 = { @(@(@(S, x), y), z) → @(@(x, z),@(y, z)), @(@(K,x), y) → x,
@(I, x)→ x, @(@(D,x), x)→ x }. By the persistency decomposition, UNC(R)
follows UNC(R1) and UNC(R2). Since R1 is right-reducible, UNC(R1) holds.
Since R2 is non-ω-overlapping, UNC(R2) holds. Thus, one obtains UNC(R).

The techniques in the present paper mainly contributed to make our tool
ACP win the UNC category of CoCo 2018. The details of the competition can be
seen at http://project-coco.uibk.ac.at/2018/. The version of ACP for CoCo 2018
(ver. 0.62) is downloadable from http://www.nue.ie.niigata-u.ac.jp/tools/acp/.

8 Conclusion

In this paper, we have studied automated methods for (dis)proving the UNC
property of TRSs. We have presented some new methods for (dis)proving the
UNC property of TRSs. Presented methods have been implemented in our tool
ACP based on divide-and-conquer criteria.

Acknowledgements

Thanks are due to the anonymous reviewers of the previous versions of the paper.
This work is partially supported by JSPS KAKENHI No. 18K11158.

References

1. Aoto, T., Toyama, Y.: Top-down labelling and modularity of term rewriting sys-
tems. Research Report IS-RR-96-0023F, School of Information Science, JAIST
(1996)

Automated Proofs of UNC 17

2. Aoto, T., Toyama, Y.: On composable properties of term rewriting systems. In:
Proc. of 6th ALP and 3rd HOA. LNCS, vol. 1298, pp. 114–128. Springer-Verlag
(1997)

3. Aoto, T., Yoshida, Y., Toyama, Y.: Proving confluence of term rewriting systems
automatically. In: Proc. of 20th RTA. LNCS, vol. 5595, pp. 93–102. Springer-Verlag
(2009)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

5. Bergstra, J.A., Klop, J.W.: Conditional rewrite rules: confluence and termination.
Journal of Computer and System Sciences 32, 323–362 (1986)

6. Dauchet, M., Heuillard, T., Lescanne, P., Tison, S.: Decidability of the confluence
of finite ground term rewrite systems and of other related term rewrite systems.
Information and Computation 88, 187–201 (1990)

7. Gramlich, B.: Modularity in term rewriting revisited. Theoretical Computer Sci-
ence 464, 3–19 (2012)

8. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. Journal of the ACM 27(4), 797–821 (1980)

9. Jaffar, J.: Efficient unification over infinite terms. New Generation Computing 2,
207–219 (1984)

10. Kahrs, S., Smith, C.: Non-ω-overlapping TRSs are UN. In: Proc. of 1st FSCD.
LIPIcs, vol. 52, pp. 22:1–17. Schloss Dagstuhl (2016)

11. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termi-
nation. In: Proc. of 18th LPAR. LNCS, vol. 7180, pp. 258–273. Springer-Verlag
(2012)

12. Klop, J.: Combinatory Reduction Systems, Mathematical Centre Tracts, vol. 127.
CWI, Amsterdam, Holland (1980)

13. Klop, J., de Vrijer, R.: Extended term rewrite systems. In: Proc. of 2nd CTRS.
LNCS, vol. 516, pp. 26–50. Springer-Verlag (1990)

14. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence - a progress report.
In: Proc. of 26th CADE. LNAI, vol. 10395, pp. 385–397. Springer-Verlag (2017)

15. O’Donnell, M.: Computing in systems described by equations, LNCS, vol. 58.
Springer-Verlag (1977)

16. van Oostrom, V.: Developing developments. Theoretical Computer Science 175(1),
159–181 (1997)

17. Radcliffe, N.R., Moreas, L.F.T., Verma, R.M.: Uniqueness of normal forms for
shallow term rewrite systems. ACM Transactions on Computational Logic 18(2),
17:1–17:20 (2017)

18. Rapp, F., Middeldorp, A.: Automating the first-order theory of rewriting for left-
linear right-ground rewrite systems. In: Proc. of 1st FSCD. LIPIcs, vol. 52, pp.
36:1–17. Schloss Dagstuhl (2016)

19. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland
(1988)

20. Toyama, Y.: Confluent term rewriting systems (invited talk). In: Proc. of 16th RTA.
LNCS, vol. 3467, p. 1. Springer-Verlag (2005), slides at http://www.nue.ie.niigata-
u.ac.jp/toyama/user/toyama/slides/toyama-RTA05.pdf

21. Toyama, Y., Oyamaguchi, M.: Conditional linearization of non-duplicating term
rewriting systems. IEICE Transactions on Information and Systems E84-D(4),
439–447 (2001)

22. de Vrijer, R.: Conditional linearization. Indagationes Mathematicae 10(1), 145–159
(1999)

18 T. Aoto and Y. Toyama

A Omitted Proofs

Proof (of Proposition 2). Suppose s
∗↔R t, s, t ∈ NF(R) and s 6= t. Then from

s 6= t, we have s
+↔R t, and thus s ↔R s′

∗↔R t for some s′. If s →R s′ then
this contradicts s ∈ NF(R). If s′ →R s then s′ = C[lθ] and s = C[rθ] for some
l → r ∈ R, and hence from r /∈ NF(R) we know s /∈ NF(R). This is again a
contradiction. ut

In the proofs below, we use the notion of subterm occurrences. Subterm oc-
currences α and β are identified if and only if α and β occur at the same position.
Thus, α = β also implies they are identical as a term, but distinct occurrences
of the same subterm are regarded as not identical. We write α ⊆ β if the sub-
term occurrence α is contained in the subterm occurrence β; we write α ⊂ β if
α 6= β in addition. It is essential in the proof of Theorem 1 to use the subterm
occurrences but not the subterms in the definition of Redin.

We first prepare two lemmas to present a proof of Theorem 1.

Lemma 4. Let R be a semi-equational CTRS and l → r ⇐ Γ ∈ R be left-
linear. Suppose s P←−q lθ →ε,l→r⇐Γ rθ, and any redex occurrence of lθ −→q P s
is contained in a subterm occurrence of θ(x) in lθ for some x ∈ V(l). Then there
exists t such that s →ε,l→r⇐Γ t ←−q rθ. Furthermore, if r is linear and |P | = 1

then s→ε,l→r⇐Γ t
=← rθ.

Proof. Let P = {p1, . . . , pk}, and, for each 1 ≤ i ≤ k, let αi be the subterm oc-
currence in lθ at pi and βi be the subterm occurrence in s at pi. For each x ∈ V(l),
let θ(x) = Cx[αi1 , . . . , αim] with all α1, . . . , αk in θ(x) displayed. Take a substi-
tution θ′ such as θ′(x) = Cx[βi1 , . . . , βim]. Then, we have s = lθ′ by linearity of

l, and moreover, θ′(y)
∗↔ θ(y) for all y ∈ V by definition. From the latter and

`R Γθ, we obtain `R Γθ′. Thus, s = lθ′ →ε,l→r⇐Γ rθ′. Let r = C ′[x1, . . . , xn]
with all variable occurrences in r displayed. Then rθ = C ′[x1θ, . . . , xnθ] −→q
C ′[x1θ

′, . . . , xnθ
′] = rθ′. Thus, s→ε,l→r⇐Γ rθ

′ ←−q rθ. Suppose in addition that
r is linear and k = 1. Then, θ(x) = Cx[α1] for some x ∈ V(l) and θ(y) = Cy for all

y ∈ V(l) such that y 6= x. Thus, rθ = C ′[x1θ, . . . , xnθ]
=→ C ′[x1θ

′, . . . , xnθ
′] = rθ′

by the linearity of r. ut

Lemma 5. Let R be a semi-equational CTRS of type 1 and l1 → r1 ⇐ Γ1 ∈ R.
Suppose s p← l1θ →ε,l1→r1⇐Γ1 r1θ, and the redex occurrence of l1θ →p s is not
contained in any subterm occurrence of θ(x) (x ∈ V(l1)) in l1θ. Then s = r1θ
or s ← l1θ → r1θ is an instance of a CCP Σ ⇒ 〈u, v〉 i.e. there exists some
substitution σ such that s = uσ, r1θ = vσ and `R Σσ.

Proof. Let s p,l2→r2⇐Γ2← l1θ. W.l.o.g. assume V(l1 → r1 ⇐ Γ1) ∩ V(l2 →
r2 ⇐ Γ2) = ∅. Then we can let l1θ = l1[l2]pθ and s = l1θ[r2θ]p, and assume
`R Γ1θ, Γ2θ. By the condition p ∈ PosF (l1), we have l1θ|p = l1|pθ = l2θ, and
thus l1|p and l2 are unifiable. Then, there exists an mgu ρ of l1|p and l2 and
a substitution σ such that σ ◦ ρ = θ. If l1 → r1 ⇐ Γ1 and l2 → r2 ⇐ Γ2 are
identical and p = ε, then by our assumption that R has type 1, we have s = r1θ.

Automated Proofs of UNC 19

Otherwise, there exists a CCP Γ1ρ, Γ2ρ ⇒ 〈l1[r2]pρ, r1ρ〉 of R. Then we have
s = l1[r2]pθ = l1[r2]pρσ = uσ, r1θ = r1ρσ = vσ, and Γ1θ∪Γ2θ = (Γ1ρ∪Γ2ρ)σ =
Σσ. Thus, from `R Γ1θ, Γ2θ, it follows `R Σσ. ut

Proof (of Theorem 1). We show the claim t −→q t1 and t −→q t2 imply t1 −→q ∗ t3
and t2 −→q t3 for some t3. In fact, the proof is almost same as that of the
criteria for TRSs. The only essential difference is captured by Lemmas 4 and
5. For such parallel peak, let t −→q P1

t1 with P1 = {p11, . . . , p1m} and t −→q P2

t2 with P2 = {p21, . . . , p2n}. We set subterm occurrences αi = t|p1i for i =
1, . . . ,m and βj = t|p2j for j = 1, . . . , n. Let t = C1[α1, . . . , αm]p11,...,p1m =
C2[β1, . . . , βn]p21,...,p2n . Let t|pk = lkσk with lk → rk ⇐ Γk ∈ R. Then, we have
t1 = C1[r11σ11, . . . , r1mσ1m] t2 = C2[r21σ21, . . . , r2nσ2n], and `R Γkσk for all
pk ∈ P1 ∪ P2. Let

Redin(t1 ←−q t −→q t2) = {αi | ∃j.αi ⊂ βj}] {βj | ∃i.βj ⊆ αi}
Redout(t1 ←−q t −→q t2) = {αi | ∀j.αi 6⊂ βj}] {βj | ∀i.βj 6⊆ αi}

Let us denote by |t| the size of a term t, and |M | =
∑
t∈M |t| for a term multiset

M . Let I = Redin(t1 ←−q t −→q t2). The proof of the claim is by induction on |I|.

– Case |I| = 0. Then for all pk1 , pk2 ∈ P1 ∪ P2, k1 6= k2 implies pk1 ‖ pk2 . For
notational simplicity, we only consider the case t = C[α1, . . . , αm, β1, . . . , βn],
t1 = C[α′1, . . . , α

′
m, β1, . . . , βn], t2 = C[α1, . . . , αm, β

′
1, . . . , β

′
n], with αi → α′i

(1 ≤ i ≤ m) and βj → β′j (1 ≤ j ≤ n). Let t3 = C[α′1, . . . , α
′
m, β

′
1, . . . , β

′
n],

Then t1 −→q P2 t3 and t2 −→q P1 t3.
– Case |I| > 0.

Let γ1, . . . , γh be subterm occurrences of the term t contained in Redout(t1 ←−q
t −→q t2).
Then we can write t = C ′[γ1, . . . , γh], t1 = C ′[γ11, . . . , γ1h], t2 = C ′[γ21, . . . , γ2h],
where, for each 1 ≤ k ≤ h, γk −→q γ1k and γk −→q γ2k with one of them being
a root step. It is sufficient to show there are γ′1, . . . , γ

′
h such that γ1k −→q ∗ γ′k

and γ2k −→q γ′k for each 1 ≤ k ≤ h.
Suppose 1 ≤ k ≤ h.
• Let us consider the case γk −→q {ε} γ1k and γk −→q P γ2k. Then there

exist l → r ⇐ Γ ∈ R and θ such that γk = lθ and γ1k = rθ and `R Γθ.
Let γk = Ĉ[γ̂1, . . . , γ̂g] where the subterm occurrences γ̂1, . . . , γ̂g are at

the respective positions in P . Then we can let γ2k = Ĉ[γ̂′1, . . . , γ̂
′
g] with

γ̂i → γ̂′i for each 1 ≤ i ≤ g.
First, consider the case that that for each γ̂i, there exists x ∈ V(l) such
that γ̂i is contained in some θ(x). Then, by Lemma 4, γ2k → ◦ ←−q γ1k.
Otherwise, there exists some 1 ≤ i ≤ g such that γ̂i is contained in θ(x)
for no x ∈ V(l). Let p be the position of γ̂i in γk. Then we have γk →p

γk[γ̂′i]p −→q P\{p} γ2k. Then, by Lemma 5, 〈γk[γ̂′i], γ1k〉 is an instance of
some CCP Γ ⇒ 〈u, v〉, i.e. there exists some σ such that γk[γ̂′i] = uσ,
γ1k = vσ and `R Γσ. We distinguish two cases.
∗ Case p = ε. Then we have P = {ε} and γk[γ̂′i]p = γ2k. Furthermore,
Γ ⇒ 〈u, v〉 is an overlay critical pair, and hence, we have Γ `R u −→q

20 T. Aoto and Y. Toyama

◦ ←−q ∗ v by the parallel-closed assumption. Thus, uσ −→q ◦ ←−q ∗ vσ
follows from `R Γσ by Definition. Hence we have γ1k = vσ −→q ∗
◦ ←−q uσ = γk[γ̂′i] = γ2k.

∗ Case p 6= ε. Then, Γ ⇒ 〈u, v〉 is an inner-outer critical pair. Hence, we
have Γ `R u −→q v by the parallel-closed assumption. Thus, uσ −→q
vσ follows from `R Γσ by Definition. Hence we have γ1k = vσ ←−q
uσ = γk[γ̂′i] −→q P\{p} γ2k. Now, Redin(t1 ←−q ◦ −→q t2) contains
γ̂1, . . . , γ̂g. On the other hand, Redin(γ1k ←−q γk[γ̂′i] −→q γ2k) contains
only subterm occurrences of γ̂1, . . . , γ̂p−1, γ̂p+1, . . . , γ̂g. Thus, we have
|Redin(γ1k ←−q γk[γ̂′i] −→q γ2k)| < |Redin(t1 ←−q ◦ −→q t2)|. Hence,
one can apply the induction hypothesis, to obtain γ1k −→q ∗ ◦ ←−q
γ2k.

• The case γk −→q P γ1k and γk −→q {ε} γ2k. This case is proved analogously
to the previous case. ut

Proof (of Theorem 2). Again, the proof is almost same as that of the criteria for
TRSs. Let R be a semi-equational CTRS. We show the claim t→ t1 and t→ t2
imply t1

∗→ t3 and t2
=→ t3 for some t3. Then the confluence property follows

[8]. Let t→pi,li→ri⇐Γi
ti, αi be the subterm occurrence at pi in t, and βi be the

subterm occurrence at pi in ti (i = 1, 2). Then we have αi → βi for i = 1, 2. We
distinguish three cases.

– Case p1 ‖ p2. Then we have t = C[α1, α2]p1,p2 t1 = C[β1, α2]p1,p2 , and
t2 = C[α1, β2]p1,p2 for some context C. Thus, t1 →p2 C[β1, β2]p1,p2 p1 ← t2.

– Case p1 ≥ p2. Let p = p1 \ p2. Then we have r1θ ε,l1→r1⇐Γ1← l1θ →
t2|p1 . Suppose there exists x ∈ V(l1) such that the redex occurrence α2 is

contained in a subterm occurrence of θ(x) in t. Then, by Lemma 4, t1
=→

◦ ← t2. Otherwise the redex occurrence α1 is not contained in any subterm
occurrence of θ(x) (x ∈ V(l1)) in t. Thus, by Lemma 5, there exist a CCP
Σ ⇒ 〈u, v〉 and a substitution σ, such that r2θ = vσ, t2|p1 = uσ and `R Σσ.

Thus, by the assumption t1
∗→ ◦ =← t2.

– Case p1 < p2. Let p = p2 \ p1. Then we have t1|p2 ← l2θ →ε,l2→r2⇐Γ2

r2θ. Suppose there exists x ∈ V(l2) such that the redex occurrence α1 is
contained in a subterm occurrence of θ(x) in t. Then, by Lemma 4, t1 →
◦ =← t2. Otherwise the redex occurrence α1 is not contained in any subterm
occurrence of θ(x) (x ∈ V(l1)) in t. Thus, by Lemma 5, there exist a CCP
Σ ⇒ 〈u, v〉 and a substitution σ, such that r2θ = uσ, t1|p2 = vσ and `R Σσ.

Thus, by the assumption, t1
∗→ ◦ =← t2. ut

Proof (of Theorem 4). We here supplement the proof of Theorem 4. For (c),
take Sl→r⇐c(s, t) = {σ | C[lσ] = s, C[lσ] = t} and then RED1(Γ, s, t) =⋃
l→r⇐c∈R{Σ | 〈Σ, rhs(cσ)〉 ∈ SIM0(Γ, lhs(cσ)), σ ∈ Sl→r⇐c(s, t)}, where lhs(u1σ ≈

v1σ, . . . , unσ ≈ vnσ) = 〈u1σ, . . . , unσ〉 and rhs(u1σ ≈ v1σ, . . . , unσ ≈ vnσ) =
〈v1σ, . . . , vnσ〉. For (d), takeA =

⋃
(Ψ,s′)∈SIM0(Γ,s)

{〈Γ ′, s′, t′〉 | (Γ ′, t′) ∈ SIM0(Ψ, t)}
and

⋃
{RED1(Γ ′, s′, t′) | 〈Γ ′, s′, t′〉 ∈ A}. For (g), as ∼1 = ∼0 ◦ ↔1 ◦ ∼0, take

SRS010(Γ, s, t) ∪ SRS010(Γ, t, s).

Automated Proofs of UNC 21

Now, the condition (i) is equivalent to 〈Σ, t〉 ∈ SIM0(Γ, s) for some Σ or
SIM1(Γ, s, t) 6= ∅. The condition (ii) is equivalent to RED2(Γ, s, t)∪RED2(Γ, t, s) 6=
∅. The first part of condition (iii) is equivalent to (a) Γ R s →2 ◦ ∼0 t
or (b) Γ R s →1 ◦ ∼1 t or (c) Γ R s →1 ◦ ∼0 t. (a,c) is equivalent to
RED1(Σ, s, t′) ∪ RED2(Σ, s, t′) 6= ∅ for some 〈Σ, t′〉 ∈ SIM0(Γ, t). (b) is equiv-
alent to SIM1(Σ, s′, t) 6= ∅ for some 〈Σ, s′〉 ∈ RED1(Γ, s). The second part is
similar. ut

Proof (of Lemma 1). From (1),
∗↔0 =

∗↔1. From →0 ⊆ →1 and (2), NF(→0) =
NF(→1). Thus, the claim follows. ut

Proof (of Lemma 2). From (1),
∗↔0 =

∗↔1. Thus, the claim follows from (2). ut

B Comparison to our Definition 3 and Definition 9 of [21]
and a proof of Theorem 3

The following definition is obtained by adding the rule (refl) to the Definition
9 of [21].

Definition 7. Let R be a non-duplicating LR-separated CTRS. Let Γ be a mul-
tiset of equations t′ ≈ s′ and a fresh constant •. Then relations t ∼

Γ
s and t ∼.

Γ
s

on terms are inductively defined as follows:

(asp) t ∼
{t≈s}

s.

(refl) t ∼
{}
t.

(sym) If t ∼
Γ
s then s ∼

Γ
t.

(trans) If t ∼
Γ
r and r ∼

Γ ′
s then t ∼

ΓtΓ ′
s.

(cntxt) If t ∼
Γ
s then C[t] ∼

Γ
C[s].

(rule) If l → r ⇐ x1 ≈ y1, . . . , xn ≈ yn ∈ R and x1θ ∼
Γi

yiθ (i = 1, . . . , n) then

C[lθ] ∼.
Γ
C[rθ] where Γ = Γ1 t · · · t Γn.

(bullet) If t ∼.
Γ
s then t ∼

Γt{•}
s.

Note t ∼
Γ
s in the sense of Definition 9 of [21] implies t ∼

Γ
s in the sense of

Definition 7. On the other hand, t ∼
Γ
s in the sense of Definition 7 uses (refl)

rule in the derivation, then t ∼
Γ
s in the sense of Definition 9 of [21] does not

hold.
Now, Lemma 3 of [21] also follows for our Definition of ∼

Γ
and ∼.

Γ
, since the

claim holds for the (refl) case trivially.

Lemma 6 (Lemma 3 of [21], generalized). Let Γ = {p1 ≈ q1, . . . , pm ≈
qm, •, . . . , •} be a multiset in which • occurs k times (k ≥ 0), and let Pi : piθ

∗↔
qiθ (i = 1, . . . ,m). (1) If t ∼

Γ
s then there exists a proof Q : tθ

∗↔ sθ with

22 T. Aoto and Y. Toyama

w(Q) ≤ Σm
i=1 + k (2) If t ∼.

Γ
s then there exists a proof Q : tθ → sθ with

w(Q) ≤ Σm
i=1 + k + 1.

Thus, Theorem 1 of [21] follows for our Definition of ∼
Γ

and ∼.
Γ

.

Theorem 9 (Theorem 1 of [21], generalized). Let R be a semi-equational
non-duplicating LR-separated CTRS. Then R is weight decreasing joinable if for
any critical pair Γ ` 〈s, t〉 of R, either (i) s ∼

Σ
t for some Σ v Γ t {•}, (ii)

s ∼.
Σ
t or t ∼.

Σ
s for some Σ v Γ t {•}, or (iii) s ∼.

Σ1

◦ ∼
Σ2

t and t ∼.
Σ′

1

◦ ∼
Σ′

2

s for

some Σ1, Σ2, Σ
′
1, Σ

′
2 such that Σ1 tΣ2 v Γ t {•} and Σ′1 tΣ′2 v Γ t {•}.

Below, we abbreviate {
k-times︷ ︸︸ ︷
•, . . . , •} as {•k}.

Lemma 7. Let Λ be a multiset of equations. (i) If Λ R u ∼k v then u ∼
∆
v for

some ∆ = Λ′t{•k} such that Λ′ v Λ. (ii) If Λ R u→k v then u ∼.
∆
v for some

∆ = Λ′ t {•k−1} such that Λ′ v Λ. (iii) If Λ R 〈u1, . . . , un〉 ∼k 〈v1, . . . , vn〉
then uj ∼

∆j

vj (j = 1, . . . , n) for some ∆1, . . . ,∆n such that
⊔
j ∆j = Λ′ t {•k}

for some Λ′ v Λ.

Proof. The proofs of (i)–(iii) proceed by induction on the derivation simultane-
ously. ut

For any multiset ∆ of equations and •, let ∆• be the multiset of • obtained
from ∆ by removing all equations, and ∆eq be the multiset of equations obtained
from ∆ by removing all •. Furthermore, we denote |∆| the length of ∆.

Lemma 8. Let ∆ be a multiset of equations and •. (i) If u ∼
∆
v then Λ R

u ∼k v for any Λ w ∆eq, where k = |∆•|. (ii) If u ∼.
∆

v then Λ R u ∼k v
for any Λ w ∆eq, where k = |∆•| + 1 (iii) If uj ∼

∆j

vj (j = 1, . . . , n), then

Λ R 〈u1, . . . , un〉 ∼k 〈v1, . . . , vn〉 for any Λ w
⊔
j ∆

eq
j , where k = |

⊔
j ∆
•
j |.

Proof. The proofs of (i)–(iii) proceed by induction on the derivation simultane-
ously. ut

Lemma 9. Let Γ be a multiset of equations. (i) s ∼
Σ
t for some Σ v Γ t {•}

iff Γ R s ∼≤1 t. (ii) s ∼.
Σ

t for some Σ v Γ t {•} iff Γ R s →1 t or

Γ R s→2 t. (iii) s ∼.
Σ1

◦ ∼
Σ2

t for some Σ1, Σ2 such that Σ1 tΣ2 v Γ t {•} iff

Γ R s→i ◦ ∼j t with i+ j ≤ 2.

Proof. (i) (⇒) Suppose s ∼
Σ
t for some Σ v Γ t {•}. Then by Lemma 8, Λ R

s ∼k t for any Λ w Σeq, where k = |Σ•|. If Σ v Γ then • /∈ Σ, and hence,
Λ R s ∼0 t for any Λ w Σeq = Σ, as k = |Σ•| = 0. Thus, Λ R s ∼0 t

Automated Proofs of UNC 23

for any Λ w Σ. Hence Γ R s ∼0 t. Otherwise, we have • ∈ Σ, and hence,
Σ = Σ′ t {•} for some Σ′ v Γ . Then, Λ R s ∼1 t for any Λ w Σeq = Σ′, as
k = |Σ•| = 1. Thus, Γ R s ∼1 t. Therefore, Γ R s ∼≤1 t holds. (⇐) Firstly,
suppose Γ R s ∼0 t. Then, by Lemma 7, s ∼

Σ
t for some Σ = Γ ′ t {•0} such

that Γ ′ v Γ , i.e. s ∼
Σ
t for some Σ v Γ . Next, suppose Γ R s ∼1 t. Then, by

Lemma 7, s ∼
Σ
t for some Σ = Γ ′ t {•1} such that Γ ′ v Γ , i.e. s ∼

Σ
t for some

Σ v Γ t {•}. Thus, the claim holds.
(ii) (⇒) Suppose s ∼.

Σ
t for some Σ v Γ t{•}. Then by Lemma 8, Λ R s→k t

for any Λ w Σeq, where k = |Σ•| + 1. If Σ v Γ then • /∈ Σ, and hence,
Λ R s →1 t for any Λ w Σeq = Σ, as k = |Σ•| + 1 = 1. Thus, Λ R s →1 t
for any Λ w Σ. Hence Γ R s →1 t. Otherwise, we have • ∈ Σ, and hence,
Σ = Σ′ t {•} for some Σ′ v Γ . Then, Λ R s →2 t for any Λ w Σeq = Σ′, as
k = |Σ•|+ 1 = 2. Thus, Γ R s→2 t. Therefore, Γ R s→1 t or Γ R s→2 t
holds. (⇐) Firstly, suppose Γ R s →1 t. Then, by Lemma 7, s ∼.

Σ
t for some

Σ = Γ ′ t {•0} such that Γ ′ v Γ , i.e. s ∼.
Σ

t for some Σ v Γ . Next, suppose

Γ R s →2 t. Then, by Lemma 7, s ∼.
Σ

t for some Σ = Γ ′ t {•1} such that

Γ ′ v Γ , i.e. s ∼.
Σ
t for some Σ v Γ t {•}. Thus, the claim holds.

(iii) (⇒) Suppose s ∼.
Σ1

◦ ∼
Σ2

t for some Σ1, Σ2 such that Σ1 t Σ2 v Γ t {•}.
Firstly, if Σ1 t Σ2 v Γ , then, as in the proof of (i) and (ii), it follows Γ R
s →1 ◦ ∼0 t. Secondly, if • ∈ Σ1, then as in the proof of (i) and (ii), it follows
Γ R s →2 ◦ ∼0 t. Finally, if • ∈ Σ2, then as in the proof of (i) and (ii),
it follows Γ R s →1 ◦ ∼1 t. Thus, in any case, Γ R s →i ◦ ∼j t with
i+ j ≤ 2. (⇐) Suppose Γ R s→i ◦ ∼j t with i+ j ≤ 2. Then we have cases (a)
Γ R s →1 u ∼0 t, (b) Γ R s →1 u ∼1 t, and (c) Γ R s →2 u ∼0 t. In case
(a), there exist Γ1, Γ2 such that Γ = Γ1 t Γ2, Γ1 R s→1 u and Γ2 R u ∼0 t.
Then, as in the proof of (i) and (ii), s ∼.

Σ1

u for some for some Σ1 v Γ1 and

u ∼
Σ2

t for some for some Σ2 v Γ2. In case (b), similarly, we have s ∼.
Σ1

u for

some for some Σ1 v Γ1 and u ∼
Σ2

t for some for some Σ2 v Γ2 t {•}. In case (c),

similarly, we have s ∼.
Σ1

u for some for some Σ1 v Γ1 t {•}. and u ∼
Σ2

t for some

for some Σ2 v Γ2. Thus, the claim holds. ut

Proof (of Theorem 3). It follows immediately from Lemma 9, by noting Γ R
s→1 t implies Γ R s ∼1 t. ut

C Some detailed proofs

Proof (of Lemma 7). We prove (i)–(iii) simultaneously by induction on the
derivation.

1. Case Γ t {u ≈ v} R u ∼0 v. The claim holds since u ∼
{u≈v}

v by asp.

24 T. Aoto and Y. Toyama

2. Case Γ R t ∼0 t The claim holds since t ∼
{}
t by refl.

3. Case Γ R s ∼i t is derived from Γ R t ∼i s. By induction hypothesis,
t ∼
∆
s for some ∆ = Γ ′ t {•i} such that Γ ′ v Γ . Then s ∼

∆
t by sym, and

the claim holds.

4. Case Γ t Σ R s ∼i+j u is derived from Γ R s ∼i t and Σ R t ∼j u
By induction hypothesis, s ∼

∆1

t for some ∆1 = Γ ′ t {•i} such that Γ ′ v Γ ,

and t ∼
∆2

u for some ∆2 = Σ′ t {•j} such that Σ′ v Σ. Take ∆ = ∆1 t∆2.

Then s ∼
∆
u by trans. Furthermore, ∆ = ∆1 t∆2 = Γ ′ t {•i} tΣ′ t {•j} =

Γ ′ tΣ′ t {•i+j}, and Γ ′ tΣ′ v Γ tΣ. Hence the claim holds.

5. Case Γ R C[s] ∼i C[t] is derived from Γ R s ∼i t By induction hypoth-
esis, s ∼

∆
t for some ∆ = Γ ′ t {•i} such that Γ ′ v Γ . Then C[s] ∼

∆
C[t] by

cntxt, and the claim holds.

6. Case
⊔
j Γj R 〈u1, . . . , un〉 ∼k 〈v1, . . . , vn〉 is derived from Γ1 R u1 ∼i1

v1, . . . , Γn R un ∼in vn where k =
∑
j ij . By induction hypothesis, for each

j = 1, . . . , n, uj ∼
∆j

vj for some ∆j = Γ ′j t {•ij} such that Γ ′j v Γj . Since⊔
j ∆j =

⊔
j Γ
′
j t {•k} and

⊔
j Γ
′
j v

⊔
j Γj , the claim holds.

7. Case Γ R s ∼i t is derived from Γ R s →i t. By induction hypothesis,
s ∼.
∆
t for some ∆ = Γ ′t{•i−1} such that Γ ′ v Γ . Then s ∼

∆t{•}
t by bullet

and ∆ t {•} = Γ ′ t {•i}. Thus, the claim holds.

8. Case Γ R C[lσ] →i+1 C[rσ] is derived from Γ R 〈x1σ, . . . , xnσ〉 ∼i
〈y1σ, . . . , ynσ〉 where l → r ⇐ x1 ≈ y1, . . . , xn ≈ yn ∈ R. By induction
hypothesis, xjσ ∼

∆j

yjσ (j = 1, . . . , n) for some∆1, . . . ,∆n such that
⊔
j ∆j =

Γ ′ t {•i} for some Γ ′ v Γ . Then, by rule, we have C[lθ] ∼.
∆

C[rθ] where

∆ =
⊔
j ∆j . Thus, the claim holds. ut

Proof (of Lemma 8). We prove (i)–(iii) simultaneously by induction on the
derivation.

1. Case (asp). We have t ∼
{t≈s}

s. Then Λ R t ∼0 s for any Λ w {t ≈ s} by

definition.

2. Case (refl). We have t ∼
{}
t. Then Λ R t ∼0 t for any Λ by definition.

3. Case (sym). Suppose s ∼
Γ
t is derived from t ∼

Γ
s. Let Λ w Γ eq. Then

by induction hypothesis, Λ R t ∼k s, where k = |Γ •|. Then, it follows
Λ R t ∼k s by definition.

4. Case (trans). Suppose t ∼
ΓtΣ

s is derived from t ∼
Γ
r and r ∼

Σ
s. Let Λ w

(Γ t Σ)eq. Then, there exist Λ1, Λ2 such that Λ = Λ1 t Λ2, Λ1 w Γ eq and
Λ2 w Σeq. Then, by induction hypothesis, Λ1 R t ∼k1 s where k1 = |Γ •|,
and Λ2 R t ∼k2 s where k2 = |Σ•|. Then, it follows Λ R t ∼k1+k2 s by
definition. As k1 + k2 = |Γ •|+ |Σ•| = |(Γ tΣ)•|, the claim follows.

Automated Proofs of UNC 25

5. Case (cntxt). Suppose C[t] ∼
Γ
C[s] is derived from t ∼

Γ
s. Let Λ w Γ eq. Then

by induction hypothesis, Λ R t ∼k s, where k = |Γ •|. Then, it follows
Λ R C[t] ∼k C[s] by definition.

6. Case (rule). Suppose C[lθ] ∼.
Γ
C[rθ] is derived from x1θ ∼

Γi

yiθ (i = 1, . . . , n),

where Γ = Γ1t· · ·tΓn and l→ r ⇐ x1 ≈ y1, . . . , xn ≈ yn ∈ R. Let Λ w Γ eq.
Then, there exist Λ1, . . . , Λn such that Λ =

⊔
j Λj and Λj w Γ eq

j for each
1 ≤ j ≤ n. Hence, by induction hypothesis, Λj R xjθ ∼kj yjθ where
kj = |Γ •j | for each 1 ≤ j ≤ n. Then, by definition, Λ R 〈x1θ, . . . , xnθ〉 ∼k′
〈y1θ, . . . , ynθ〉 where k′ =

∑
j kj =

∑
j |Γ •j | = |(

⊔
j Γj)

•| = |Γ •|. Then, by
definition, Λ R C[lθ] ∼k′+1 C[rθ].

7. Case (bullet). Suppose s ∼
Γt{•}

t is derived from t ∼.
Γ
s. Let Λ w Γ eq. Then

by induction hypothesis, Λ R s ∼.k s, where k = |Γ •|+ 1. Then, it follows
Λ R t ∼k s by definition. ut

D Additional examples and experiments on presented
examples

We here presents an additional example and the result of experiments on exam-
ples in the paper.

Example 8. Let

R =

{
f(x, x) → a c → h(c, g(c))
h(x, g(x))→ f(c, h(x, g(c))) k(c)→ k(h(h(c, g(c)), g(c)))

}
.

In the Table 3, we show the result of experiments for the examples presented
in the paper. Here, Rn show the TRS R in Example n. X shows success and
× shows failure. The experiment is performed on the same PC mentioned in
Section 6, with 60 sec. of timeout. The columns below the title ACP(direct) show
the results of ACP without using the decomposition methods. For Example R2,
only Corollary 1 is effective. For Example R3, only Corollary 2 is effective.
Furthermore, CSI and FORT fail for all examples.

26 T. Aoto and Y. Toyama

without (rev) (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp)

R2 × X × × ×/× /× ×/× /× × ×
R3 × × X × ×/× /× ×/× /× × ×
R5 × X X X ×/× /× ×/× /× × ×
R6 × × × × ×/X/X ×/X/X × ×
R7 × × × × ×/× /× ×/× /× × ×
R8 × X X X ×/× /× ×/× /× × ×

with (rev) (ω) (pcl) (scl) (wd) (sc) 1/2/3 (dc) 1/2/3 (rr) (cp)

R2 × X × × ×/× /× ×/× /× × ×
R3 × × × × ×/× /× ×/× /× × ×
R5 × × × × ×/× /× ×/× /× × ×
R6 × × × × ×/X/X ×/X/X × ×
R7 × × × × ×/× /× ×/× /× × ×
R8 × × × × ×/× /× ×/× /× × ×

ACP ACP(direct) CSI FORT

R2 X X × ×
R3 X X timeout ×
R5 X X × ×
R6 X X × ×
R7 X timeout timeout ×
R8 X X timeout ×

Table 3. Test for presented examples

