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Abstract. Nominal rewriting has been introduced as an extension of
first-order term rewriting by a binding mechanism based on the nominal
approach. In this paper, we extend Huet’s parallel closure theorem and
its generalisation on confluence of left-linear term rewriting systems to
the case of nominal rewriting. The proof of the theorem follows a previ-
ous inductive confluence proof for orthogonal uniform nominal rewriting
systems, but the presence of critical pairs requires a much more delicate
argument. The results include confluence of left-linear uniform nominal
rewriting systems that are not α-stable and thus are not represented by
any systems in traditional higher-order rewriting frameworks.

1 Introduction

Variable binding is ubiquitous in many expressive formal systems such as sys-
tems of predicate logics, λ-calculi, process calculi, etc. Every language containing
variable binding needs to deal with α-equivalence. Intuitively α-equivalence may
be dealt with implicitly, but much effort is required in formal treatment. To
overcome the difficulty, many studies have been made in the literature (e.g. [5,
18]), among which the nominal approach [9, 17] is a novel one—unlike other
approaches, it incorporates permutations and freshness conditions on variables
(atoms) as basic ingredients.

To deal with equational logics containing variable binding, various rewriting
frameworks have been proposed (e.g. [12, 13]). Nominal rewriting [8] has been
introduced as a new rewriting framework based on the nominal approach. A
distinctive feature of nominal rewriting is that α-conversion and capture-avoiding
substitution are not relegated to the meta-level—they are explicitly dealt with at
the object-level. In contrast, previous rewriting frameworks as in [12, 13] employ
some meta-level calculus (e.g. the simply-typed λ-calculus) and accomplish α-
conversion and capture-avoiding substitution via the meta-level calculus.

Confluence and critical pairs are fundamental notions for systematic treat-
ment of equational reasoning based on rewriting. Some basic confluence results
such as Rosen’s criterion (orthogonal systems are confluent) and Knuth-Bendix’s
criterion (terminating systems with joinable critical pairs are confluent) have
been extended to the case of nominal rewriting [3, 8, 19, 20].
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In the present paper, we are concerned with Huet’s criterion [10] (left-linear
systems with parallel closed critical pairs are confluent, which is known as the
parallel closure theorem) in the setting of nominal rewriting. We are also aiming
to obtain its generalisation analysing overlaps at the root as in the case of term
rewriting [21]. These results extend the previous results of Rosen’s criterion in
the nominal rewriting setting [3, 8, 19], and include confluence of, in particular,
weakly orthogonal nominal rewriting systems, i.e. left-linear nominal rewriting
systems in which all critical pairs are α-equivalent.

The difficulties in proving confluence properties of nominal rewriting systems,
compared to the case of ordinary term rewriting, are threefold. First, rewriting is
performed via matching modulo α-equivalence, so that a redex is not necessarily
an instance of the LHS of a rule but a term that is α-equivalent to it. This
causes, among others, similar difficulties in proving the critical pair lemma to
those for E-critical pairs [11]. Secondly, rewrite rules have freshness contexts (or
constraints), and accordingly, critical pairs are also accompanied with freshness
contexts. This is analogous to the case of term rewriting with certain constraints
(e.g. [7]). Thirdly, as a characteristic feature of nominal rewriting, rewrite steps
involve permutations, or, in terms of [8], the set of rewrite rules is closed under
equivariance. Therefore, to keep finiteness of the representations, critical pairs
need to be parametrised by permutations.

Due to these difficulties, it is not obvious in nominal rewriting that a peak
with rewriting at a non-variable position of one of the rules is an instance of
a critical pair. This property is necessary in the proof of Lemma 13, where we
construct required permutations and substitutions using some lemmas and the
property of the most general unifier occurring in the critical pair.

The parallel closure theorem for left-linear nominal rewriting systems has
not been shown for years, while confluence by orthogonality and the critical pair
lemma has already been discussed in [3, 8, 19, 20]: [3, 8, 19] deal with left-linear
systems without critical pairs, and [20] deals with terminating or left-and-right-
linear systems. We give an example of a nominal rewriting system whose conflu-
ence is shown by our criterion but cannot be shown by any of the criteria given
in the previous papers (see Example 1). Moreover, in the present paper, we do
not particularly assume α-stability [19] of nominal rewriting systems. This is in
contrast to [3, 19, 20] where confluence criteria are considered only for α-stable
rewriting systems. We give an example of a nominal rewriting system that is not
α-stable and that is shown to be confluent by our criterion (see Example 2).

The structure of our confluence proof follows the so-called inductive method
for first-order orthogonal term rewriting systems as explained, e.g. in Chapter 9
of [4, pp. 208–211], but much more complicated than the first-order case by
the above-mentioned difficulties. Our confluence proof also shows that such an
inductive method can be adapted to cases with critical pairs.

The paper is organised as follows. In Section 2, we recall basic notions of
nominal rewriting and critical pairs. In Section 3, we prove confluence for some
classes of nominal rewriting systems via the parallel closure theorem and its
generalisation. In Section 4, we conclude with discussion on related work.
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2 Nominal rewriting

Nominal rewriting [8] is a framework that extends first-order term rewriting by a
binding mechanism. In this section, we recall basic definitions on nominal terms
and nominal rewriting, following [19, 20]. For further descriptions and examples,
see [8, 19, 20].

2.1 Nominal terms

A nominal signature Σ is a set of function symbols ranged over by f, g, . . . . We fix
a countably infinite set X of variables ranged over by X,Y, Z, . . . , and a count-
ably infinite set A of atoms ranged over by a, b, c, . . . , and assume that Σ, X and
A are pairwise disjoint. Unless otherwise stated, different meta-variables for ob-
jects in Σ, X orA denote different objects. A swapping is a pair of atoms, written
(a b). Permutations π are bijections on A such that the set of atoms for which
a 6= π(a) is finite. Permutations are represented by lists of swappings applied
in the right-to-left order. For example, ((b c)(a b))(a) = c, ((b c)(a b))(b) = a,
((b c)(a b))(c) = b. We write Id for the identity permutation, π−1 for the inverse
of π, and π ◦ π′ for the composition of π′ and π, i.e., (π ◦ π′)(a) = π(π′(a)).

Nominal terms, or simply terms, are generated by the grammar

t, s ::= a | π·X | [a]t | f t | 〈t1, . . . , tn〉

and called, respectively, atoms, moderated variables, abstractions, function ap-
plications and tuples. We abbreviate Id ·X as X if there is no ambiguity. f 〈 〉 is
abbreviated as f , and referred to as a constant. An abstraction [a]t is intended to
represent t with a bound. We write V (t)(⊆ X ) for the set of variables occurring
in t. A linear term is a term in which any variable occurs at most once.

Positions are finite sequences of positive integers. The empty sequence is
denoted by ε. For positions p, q, we write p � q if there exists a position o such
that q = po. We write p ‖ q for p 6� q and q 6� p. The set of positions in a
term t, denoted by Pos(t), is defined as follows: Pos(a) = Pos(π·X) = {ε};
Pos([a]t) = Pos(f t) = {1p | p ∈ Pos(t)} ∪ {ε}; Pos(〈t1, . . . , tn〉) =

⋃
i{ip | p ∈

Pos(ti)} ∪ {ε}. The subterm of t at a position p ∈ Pos(t) is written as t|p. We
write s ⊆ t if s is a subterm occurrence of t, and write s ⊂ t if s ⊆ t and s 6= t.
A position p ∈ Pos(t) is a variable position in t if t|p is a moderated variable.
The set of variable positions in t is denoted by PosX (t). The size |t| of a term t
is defined as the number of elements in Pos(t).

Next, two kinds of permutation actions π·t and tπ, which operate on terms
extending a permutation on atoms, are defined as follows:

π·a = π(a) aπ = π(a)
π·(π′·X) = (π ◦ π′)·X (π′·X)π = (π ◦ π′ ◦ π−1)·X
π·([a]t) = [π·a](π·t) ([a]t)π = [aπ]tπ

π·(f t) = f π·t (f t)π = f tπ

π·〈t1, . . . , tn〉 = 〈π·t1, . . . , π·tn〉 〈t1, . . . , tn〉π = 〈tπ1 , . . . , tπn〉
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The difference between the two consists in the clause for moderated variables.
In particular, when π′ = Id , π is suspended before X in the first action as
π·(Id ·X) = (π ◦ Id)·X = π·X, while in the second action π has no effect as
(Id ·X)π = (π ◦ Id ◦ π−1)·X = Id ·X. Note also that the permutation actions do
not change the set of positions, i.e. Pos(π·t) = Pos(tπ) = Pos(t).

A context is a term in which a distinguished constant � occurs. Contexts
having precisely one � are written as C[ ]. The term obtained from a context C
by replacing each � at positions pi by terms ti is written as C[t1, . . . , tn]p1,...,pn
or simply C[t1, . . . , tn]. Similarly, the term obtained from a term s by replacing
each subterm at positions pi by terms ti is written as s[t1, . . . , tn]p1,...,pn .

A substitution σ is a map from variables to terms. Substitutions act on vari-
ables, without avoiding capture of atoms, where substituting σ(X) for X of a
moderated variable π·X induces a permutation action π·(σ(X)). The applica-
tion of a substitution σ on a term t is written as tσ. For a permutation π and a
substitution σ, we define the substitution π·σ by (π·σ)(X) = π·(σ(X)).

The following properties hold.

Proposition 1. π·(π′·t) = (π ◦ π′)·t and (tπ)π
′

= tπ
′◦π.

Proposition 2 ([8, 22]). π·(tσ) = (π·t)σ.

Lemma 1. π·(tσ) = tπ(π·σ).

2.2 Freshness constraints and α-equivalence

A pair a#t of an atom a and a term t is called a freshness constraint. A finite set
∇ ⊆ {a#X | a ∈ A, X ∈ X} is called a freshness context. For a freshness context
∇, we define V (∇) = {X ∈ X | ∃a. a#X ∈ ∇}, ∇π = {aπ#X | a#X ∈ ∇} and
∇σ = {a#σ(X) | a#X ∈ ∇}.

The rules in Figure 1 define the relation ∇ ` a#t, which means that a#t is
satisfied under the freshness context ∇.

∇ ` a#b

∇ ` a#[a]t

∇ ` a#t

∇ ` a#f t

∇ ` a#t

∇ ` a#[b]t

∇ ` a#t1 · · · ∇ ` a#tn

∇ ` a#〈t1, . . . , tn〉

π−1·a#X ∈ ∇
∇ ` a#π·X

Fig. 1. Rules for freshness constraints

The rules in Figure 2 define the relation ∇ ` t ≈α s, which means that t is
α-equivalent to s under the freshness context ∇. ds(π, π′) in the last rule denotes
the set {a ∈ A | π·a 6= π′·a}. Note that if ∇ ` t ≈α s then Pos(t) = Pos(s).

The following properties are shown in [8, 22].

Proposition 3. 1. ∇ ` a#t if and only if ∇ ` π·a#π·t.
2. ∇ ` t ≈α s if and only if ∇ ` π·t ≈α π·s.
3. If ∇ ` a#t and ∇ ` t ≈α s then ∇ ` a#s.
4. ∀a ∈ ds(π, π′).∇ ` a#t if and only if ∇ ` π·t ≈α π′·t.
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∇ ` a ≈α a
∇ ` t ≈α s
∇ ` f t ≈α f s

∇ ` t1 ≈α s1 · · · ∇ ` tn ≈α sn
∇ ` 〈t1, . . . , tn〉 ≈α 〈s1, . . . , sn〉

∇ ` t ≈α s
∇ ` [a]t ≈α [a]s

∇ ` (a b)·t ≈α s ∇ ` b#t
∇ ` [a]t ≈α [b]s

∀a ∈ ds(π, π′). a#X ∈ ∇
∇ ` π·X ≈α π′·X

Fig. 2. Rules for α-equivalence

Proposition 4. For any freshness context ∇, the binary relation ∇ ` − ≈α −
is a congruence (i.e. an equivalence relation that is closed under any context).

In the sequel, ` is extended to mean to hold for all members of a set (or a
sequence) on the RHS.

2.3 Nominal rewriting systems

Nominal rewrite rules and nominal rewriting systems are defined as follows.

Definition 1 (Nominal rewrite rule). A nominal rewrite rule, or simply
rewrite rule, is a triple of a freshness context ∇ and terms l and r such that
V (∇)∪V (r) ⊆ V (l) and l is not a moderated variable. We write ∇ ` l→ r for a
rewrite rule, and identify rewrite rules modulo renaming of variables. A rewrite
rule ∇ ` l → r is left-linear if l is linear. For a rewrite rule R = ∇ ` l → r and
a permutation π, we define Rπ as ∇π ` lπ → rπ.

Definition 2 (Nominal rewriting system). A nominal rewriting system, or
simply rewriting system, is a finite set of rewrite rules. A rewriting system is
left-linear if so are all its rewrite rules.

Definition 3 (Rewrite relation). Let R = ∇ ` l → r be a rewrite rule. For
a freshness context ∆ and terms s and t, the rewrite relation is defined by

∆ ` s→〈R,π,p,σ〉 t
def⇐⇒ ∆ ` ∇πσ, s = C[s′]p, ∆ ` s′ ≈α lπσ, t = C[rπσ]p

where V (l) ∩ (V (∆) ∪ V (s)) = ∅. We write ∆ ` s p→R t if there exist π and σ
such that ∆ ` s →〈R,π,p,σ〉 t. We write ∆ ` s →〈R,π〉 t if there exist p and σ
such that ∆ ` s →〈R,π,p,σ〉 t. We write ∆ ` s →R t if there exists π such that
∆ ` s →〈R,π〉 t. For a rewriting system R, we write ∆ ` s →R t if there exists
R ∈ R such that ∆ ` s→R t.

Lemma 2. If ∆ ` s→〈R,π,p,σ〉 t then ∆ ` τ ·s→〈R,τ◦π,p,τ ·σ〉 τ ·t.

In the following, a binary relation ∆ ` − ./ − (./ is →R, ≈α, etc.) with a
fixed freshness context ∆ is called the relation ./ under ∆ or simply the relation
./ if there is no ambiguity. If a relation ./ is written using → then the inverse
is written using ←. Also, we write ./= for the reflexive closure and ./∗ for the
reflexive transitive closure. We use ◦ for the composition of relations. We write
∆ ` s1 ./1 s2 ./2 . . . ./n−1 sn for ∆ ` si ./i si+1 (1 ≤ i < n).
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2.4 Basic critical pairs

In this subsection, we define our notion of critical pairs, following [20].
First, we recall unification of nominal terms. Let P be a set of equations and

freshness constraints {s1 ≈ t1, . . . , sm ≈ tm, a1#u1, . . . , an#un} (where ai and
aj may denote the same atom). Then, P is unifiable if there exist a freshness
context Γ and a substitution θ such that Γ ` s1θ ≈α t1θ, . . . , smθ ≈α tmθ,
a1#u1θ, . . . , an#unθ; the pair 〈Γ, θ〉 is called a unifier of P . It is shown in [22]
that the unification problem for nominal terms is decidable. Moreover, if P is
unifiable then there exists a most general unifier (mgu for short) of P , where an
mgu of P is a unifier 〈Γ, θ〉 of P such that for any unifier 〈∆,σ〉 of P , there exists
a substitution δ such that ∆ ` Γδ and ∆ ` Xθδ ≈α Xσ for any variable X.

Definition 4 (Basic critical pair). Let Ri = ∇i ` li → ri (i = 1, 2) be
rewrite rules. We assume w.l.o.g. V (l1) ∩ V (l2) = ∅. Let ∇1 ∪ ∇π2 ∪ {l1 ≈ lπ2 |p}
be unifiable for some permutation π and a non-variable position p such that
l2 = L[l2|p]p, and let 〈Γ, θ〉 be an mgu. Then, Γ ` 〈Lπθ[r1θ]p, r

π
2 θ〉 is called a

basic critical pair (BCP for short) of R1 and R2. BCP(R1, R2) denotes the set
of all BCPs of R1 and R2, and BCP(R) denotes the set

⋃
Ri,Rj∈R BCP(Ri, Rj).

We remark that any BCP Γ ` 〈Lπθ[r1θ]p, r
π
2 θ〉 of R1 and R2 forms a

peak, i.e., we have Γ ` Lπθ[r1θ]p ←〈R1,Id,p,θ〉 L
πθ[lπ2 |pθ]p = (L[l2|p]p)πθ =

lπ2 θ →〈R2,π,ε,θ〉 r
π
2 θ.

2.5 Uniform rewrite rules

In the rest of the paper, we are concerned with confluence properties for partic-
ular classes of nominal rewriting systems. For this, we restrict rewriting systems
by some conditions. First we consider the uniformity condition [8]. Intuitively,
uniformity means that if an atom a is not free in s and s rewrites to t then a is
not free in t.

Definition 5 (Uniformity). A rewrite rule ∇ ` l → r is uniform if for any
atom a and any freshness context ∆, ∆ ` ∇ and ∆ ` a#l imply ∆ ` a#r. A
rewriting system is uniform if so are all its rewrite rules.

The following properties of uniform rewrite rules are important and will be
used in the sequel.

Proposition 5 ([8]). Suppose ∆ ` s→R t for a uniform rewrite rule R. Then,
∆ ` a#s implies ∆ ` a#t.

Lemma 3. Let ∇ ` l → r be a uniform rewrite rule, and let ∆ ` C[lπσ]p ≈α
Ĉ[u]p. Then there exists a permutation π̂ such that ∆ ` lπσ ≈α π̂·u and ∆ `
C[rπσ]p ≈α Ĉ[π̂−1·(rπσ)]p.

Proof. We prove the following generalised statement: if ∆ ` τ ·(C1[u]p)≈αC2[v]p
then there exists a permutation π satisfying
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1. ∆ ` (π ◦ τ)·u ≈α v.
2. Let u′ and v′ be terms such that (i) ∀a ∈ A. ∆ ` a#u =⇒ ∆ ` a#u′, and

(ii) ∆ ` (π ◦ τ)·u′ ≈α v′. Then ∆ ` τ ·(C1[u′]p) ≈α C2[v′]p. ((i) is equivalent
to ∀a ∈ A. ∆ ` a#v =⇒ ∆ ` a#v′ under 1 and (ii).)

The lemma is obtained as a special case of this where τ = Id , C1 = Ĉ, C2 = C,
π = π̂, v = lπσ, v′ = rπσ and u′ = π̂−1·(rπσ). The proof of the above statement
is by induction on the context C1[ ]. ut

Lemma 4. Let R be a uniform rewrite rule. If ∆ ` s′ ≈α s →〈R,π,p,σ〉 t, then
there exist π′, σ′, t′ such that ∆ ` s′ →〈R,π′,p,σ′〉 t′ ≈α t.

Proof. Noting that ∆ ` s ≈α s′ implies Pos(s) = Pos(s′), we obtain the lemma
from Lemma 3 by taking π′ = π̂−1 ◦ π and σ′ = π̂−1·σ. ut

3 Confluence of left-linear nominal rewriting systems

In this section, we study confluence properties of left-linear nominal rewriting
systems. Specifically, we prove a version of Huet’s parallel closure theorem [10]
in the setting of nominal rewriting. Huet’s parallel closure theorem states that
all left-linear parallel closed term rewriting systems are confluent, where a term
rewriting system is parallel closed if all its critical pairs are joinable in one-step
parallel reduction from left to right. (It is important to note that critical pairs
are ordered.) We also prove a generalisation of the theorem, analysing overlaps
at the root as in the case of term rewriting [21].

First we introduce, for precise treatment of α-equivalence, confluence prop-
erties modulo the equivalence relation ≈α in terms of abstract reduction sys-
tems [14].

Definition 6. Let R be a nominal rewriting system.

1. s and t are joinable modulo ≈α under a freshness context ∆, denoted by
∆ ` s ↓≈α t, iff ∆ ` s (→∗R ◦ ≈α ◦ ←∗R) t.

2. →R is confluent modulo ≈α iff ∆ ` s (←∗R ◦ →∗R) t implies ∆ ` s ↓≈α t.
3. →R is Church-Rosser modulo ≈α iff ∆ ` s (←R ∪ →R ∪ ≈α)

∗
t implies

∆ ` s ↓≈α t.
4. →R is strongly locally confluent modulo ≈α iff ∆ ` s (←R ◦ →R) t implies
∆ ` s (→=

R ◦ ≈α ◦ ←∗R) t.
5. →R is strongly compatible with ≈α iff ∆ ` s (≈α ◦ →R) t implies ∆ `
s (→=

R ◦ ≈α) t.

It is known that Church-Rosser modulo an equivalence relation ∼ is a strong-
er property than confluence modulo ∼ [14]. So in the rest of this section we aim
to show Church-Rosser modulo ≈α for some class of left-linear uniform nominal
rewriting systems through the theorems that can be seen as extensions of Huet’s
parallel closure theorem [10] and its generalisation [21].
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3.1 Parallel reduction

A key notion for proving confluence of left-linear rewriting systems is parallel
reduction. Here we define it inductively, using a particular kind of contexts.

Definition 7. The grammatical contexts, ranged over by G, are the contexts
defined by

G ::= a | π·X | [a]� | f � | 〈�1, . . . ,�n〉

Let R be a nominal rewriting system. For a given freshness context ∆, we define
the relation ∆ ` − −→q R − inductively by the following rules:

∆ ` s1 −→q R t1 · · · ∆ ` sn −→q R tn
∆ ` G[s1, . . . , sn]−→q R G[t1, . . . , tn]

(C)
∆ ` s→〈R,π,ε,σ〉 t R ∈ R

∆ ` s−→q R t
(B)

where n (≥ 0) depends on the form of G. We define ∆ ` σ −→q R δ by ∀X ∈ X .
∆ ` Xσ −→q R Xδ.

The relation ∆ ` s−→q R t can also be defined by ∆ ` C[s1, . . . , sn]p1,...,pn −→q R
C[t1, . . . , tn]p1,...,pn for some context C, where ∆ ` si →Ri ti for some Ri ∈ R,

and pi ‖ pj for i 6= j. In that case, we write ∆ ` s P−→q R t where P = {p1, . . . , pn}
(P is uniquely determined from the derivation of ∆ ` s−→q R t).

Lemma 5. 1. ∆ ` s−→q R s.
2. If ∆ ` s−→q R t then ∆ ` C[s]−→q R C[t].
3. If ∆ ` s→〈R,π,p,σ〉 t and R ∈ R then ∆ ` s−→q R t.
4. If ∆ ` s−→q R t then ∆ ` s→∗R t.

Proof. 1. By induction on s.
2. By induction on the context C[ ].
3. By 2 and the rule (B).
4. By induction on the derivation of ∆ ` s−→q R t. ut

Lemma 6. If ∆ ` s−→q R t then ∆ ` π·s−→q R π·t.

Proof. By induction on the derivation of ∆ ` s−→q R t. If the last applied rule
in the derivation is (B), then we use Lemma 2. ut

Lemma 7. If ∆ ` σ −→q R δ then ∆ ` sσ −→q R sδ.

Proof. By induction on s. If s = π·X, then we use Lemma 6. ut

Lemma 8. Let R be a uniform nominal rewriting system. If ∆ ` a#s and
∆ ` s−→q R t then ∆ ` a#t.

Proof. By Proposition 5 and Lemma 5(4). ut

We define the notions in Definition 6 for −→q R as well. Our aim is to prove
strong local confluence modulo ≈α (Theorems 1 and 2), which together with
strong compatibility with ≈α (Lemma 9) yields Church-Rosser modulo ≈α of
−→q R (and hence of →R).
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Lemma 9 (Strong compatibility with ≈α). Let R be a uniform rewriting
system. If ∆ ` s′ ≈α s−→q R t then there exists t′ such that ∆ ` s′−→q R t′ ≈α t.

Proof. By induction on the derivation of ∆ ` s−→q R t. If the last applied rule
in the derivation is (B), then the claim follows by Lemma 4. Among the other
cases, we treat the case where G = [a]�. Then the last part of the derivation
has the form

∆ ` s1 −→q R t1
∆ ` [a]s1 −→q R [a]t1

(C)

where [a]s1 = s and [a]t1 = t. Now we have two cases.

(a) s′ = [a]s′1 and ∆ ` [a]s′1 ≈α [a]s1.
Then ∆ ` s′1 ≈α s1, and so by the induction hypothesis, there exists t′1 such
that ∆ ` s′1 −→q R t′1 ≈α t1. Hence we have ∆ ` [a]s′1 −→q R [a]t′1 ≈α [a]t1.

(b) s′ = [b]s′1 and ∆ ` [b]s′1 ≈α [a]s1.
Then ∆ ` s1 ≈α (a b)·s′1 and ∆ ` a#s′1. So by the induction hypothesis,
there exists t′1 such that ∆ ` (a b)·s′1 −→q R t′1 ≈α t1. By taking π = (a b)
in Lemma 6, we have ∆ ` s′1 −→q R (a b)·t′1, and by Lemma 8, we have
∆ ` a#(a b)·t′1. Hence, we obtain the following derivations, from which the
claim follows.

∆ ` t′1 ≈α t1 ∆ ` a#(a b)·t′1
∆ ` [b](a b)·t′1 ≈α [a]t1

and
∆ ` s′1 −→q R (a b)·t′1

∆ ` [b]s′1 −→q R [b](a b)·t′1
(C)

The cases where G 6= [a]� are simpler. ut

A key lemma to the parallel closure theorem is Lemma 11, which corresponds
to Lemma 9.3.10 of [4] in the first-order case. Here we employ a version of the
statement that can be adapted to cases where critical pairs exist. First we show
a lemma to address the separated case of moderated variables.

Lemma 10. Let R be a uniform rewriting system. Then, if ∆ ` ∇σ, ∆ ` s ≈α
π·Xσ and ∆ ` s−→q R t then there exists δ such that ∆ ` ∇δ, ∆ ` t ≈α π·Xδ,
∆ ` σ −→q R δ and for any Y 6= X, Y σ = Y δ.

Proof. From ∆ ` s ≈α π·Xσ, we have ∆ ` π−1·s ≈α Xσ, and from ∆ `
s−→q R t, we have ∆ ` π−1·s−→q R π−1·t by Lemma 6. Hence by Lemma 9, there
exists t′ such that ∆ ` Xσ −→q R t′ ≈α π−1·t. We take δ defined by Xδ = t′ and
Y δ = Y σ for any Y 6= X. Then we have ∆ ` t ≈α π·Xδ and ∆ ` σ−→q R δ. Since
R is uniform, it follows from Lemma 8 that if ∆ ` a#Xσ then ∆ ` a#t′(= Xδ).
Hence, from ∆ ` ∇σ, we have ∆ ` ∇δ. ut

Lemma 11. Let R be a uniform rewriting system. Then, for any linear term l,

if ∆ ` ∇πσ, ∆ ` s ≈α lσ and ∆ ` s P−→q R t where ∀p ∈ P.∃o ∈ PosX (l). o � p
then there exists δ such that ∆ ` ∇πδ, ∆ ` t ≈α lδ, ∆ ` σ −→q R δ and for any
X /∈ V (l), Xσ = Xδ.
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Proof. By induction on l. The case where l is a moderated variable π·X follows
from Lemma 10. For the other cases, since ∀p ∈ P.∃o ∈ PosX (l). o � p, the
last rule used in the derivation of ∆ ` s −→q R t must be (C). We proceed by
case analysis according to the form of l. Here we consider the cases where l =
〈l1, . . . , ln〉 and l = [a]l1.

1. l = 〈l1, . . . , ln〉. Since ∆ ` s ≈α lσ, s is of the form 〈s1, . . . , sn〉. Then the
last part of the derivation of ∆ ` s−→q R t has the form

∆ ` s1 −→q R t1 . . . ∆ ` sn −→q R tn
∆ ` 〈s1, . . . , sn〉 −→q R 〈t1, . . . , tn〉

(C)

and for each i ∈ {1, . . . , n},∆ ` si ≈α liσ. By the induction hypothesis, there
exist δi’s such that ∆ ` ∇πδi, ∆ ` ti ≈α liδi, ∆ ` σ−→q R δi and ∀X /∈ V (li).
Xσ = Xδi. Since l is linear, we can take δ such that if X ∈ V (li) then
Xδ = Xδi and if X /∈ V (l) then Xδ = Xσ. It is easy to check that this δ
satisfies the required condition.

2. l = [a]l1. Since ∆ ` s ≈α [a]l1σ, we have two cases.
(a) s = [a]s1. Then ∆ ` s1 ≈α l1σ, and the last part of the derivation of

∆ ` s−→q R t has the form

∆ ` s1 −→q R t1
∆ ` [a]s1 −→q R [a]t1

(C)

Then by the induction hypothesis, there exists δ such that ∆ ` ∇πδ,
∆ ` t1 ≈α l1δ, ∆ ` σ −→q R δ and ∀X /∈ V (l1). Xσ = Xδ. By ∆ `
t1 ≈α l1δ, we have ∆ ` [a]t1 ≈α [a]l1δ. Since V (l1) = V (l), we have
∀X /∈ V (l). Xσ = Xδ. Thus we see that the claim holds.

(b) s = [b]s1. Then ∆ ` (b a)·s1 ≈α l1σ, ∆ ` a#s1, and the last part of the
derivation of ∆ ` s−→q R t has the form

∆ ` s1 −→q R t1
∆ ` [b]s1 −→q R [b]t1

(C)

From ∆ ` s1 −→q R t1, we have ∆ ` (b a)·s1 −→q R (b a)·t1 by Lemma 6.
Since R is uniform, it also follows ∆ ` a#t1 by Lemma 8. Hence ∆ `
b#(b a)·t1. Thus, by the induction hypothesis, there exists δ such that
∆ ` ∇πδ, ∆ ` (b a)·t1 ≈α l1δ, ∆ ` σ−→q R δ and ∀X /∈ V (l1). Xσ = Xδ.
Then from ∆ ` (b a)·t1 ≈α l1δ and ∆ ` a#t1, it follows that ∆ `
[b]t1 ≈α [a]l1δ. Since V (l1) = V (l), we see that the claim holds. ut

3.2 Confluence of left-linear parallel closed rewriting systems

In this subsection, we prove the main theorems of the paper: the parallel closure
theorem (Theorem 1) and its generalisation (Theorem 2).

First, we state a lemma concerning substitutions.

Lemma 12 ([8]). Let σ and σ′ be substitutions such that ∀X ∈ X .∆ ` Xσ ≈α
Xσ′. Then ∆ ` tσ ≈α tσ′ for any term t.
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The following can be seen as a critical pair lemma for left-linear systems.

Lemma 13. Let R be a left-linear uniform rewriting system and let R ∈ R. If

∆ ` s1
ε←R s

P−→q R s2 then one of the following holds:

1. There exists a term t such that ∆ ` s1 −→q R t←R s2.
2. There exist p ∈ P , R′ ∈ R, Γ ` 〈u, v〉 ∈ BCP(R′, R), s′, π and θ such that

∆ ` s p→R′ s
′ P\{p}−→q R s2, ∆ ` Γπθ, ∆ ` s′ ≈α uπθ and ∆ ` s1 ≈α vπθ.

Proof. Let R = ∇ ` l → r ∈ R, and suppose ∆ ` s1 ←〈R,π,ε,σ〉 s
P−→q R s2.

Then by the definition of rewrite relation, we have ∆ ` ∇πσ, ∆ ` s ≈α lπσ and
s1 = rπσ. Now we distinguish two cases.

– Case ∀p ∈ P.∃o ∈ PosX (l). o � p.
Then by Lemma 11, there exists δ such that ∆ ` ∇πδ, ∆ ` s2 ≈α lπδ and
∆ ` σ −→q R δ. Hence we have ∆ ` s2 →〈R,π,ε,δ〉 rπδ, and by Lemma 7,
∆ ` rπσ −→q R rπδ. Thus, part 1 of the claim holds.

– Case ∃p ∈ P.¬∃o ∈ PosX (l). o � p.
Then p ∈ Pos(l) \ PosX (l), and ∆ ` s →〈R′,π′,p,σ′〉 s′

P\{p}−→q R s2 for some
R′ = ∇′ ` l′ → r′ ∈ R, π′, σ′ and s′. Let L be the context with l = L[l|p]p.
First we show claim I: the set ∇′ ∪∇π̆ ∪ {l′ ≈ lπ̆|p} is unifiable for some π̆.

(Proof of claim I) By the definition of rewrite steps, we have ∆ `
∇′π′σ′,∇πσ, s|p ≈α l′π

′
σ′, s ≈α lπσ. Thus, ∆ ` s[l′π′σ′]p ≈α s[s|p]p =

s ≈α lπσ. Hence, ∆ ` s[l′π′σ′]p ≈α Lπσ[lπ|pσ]p. Now, by Lemma 3, there
exists π̂ such that

∆ ` l′π
′
σ′ ≈α π̂·(lπ|pσ) (3.1)

∆ ` s[r′π
′
σ′]p ≈α Lπσ[π̂−1·(r′π

′
σ′)]p (3.2)

From ∆ ` ∇′π′σ′,∇πσ and (3.1), we have

∆ ` ∇′(π′−1·σ′),∇π
′−1◦π̂◦π((π′−1 ◦ π̂)·σ)

∆ ` l′(π′−1·σ′) ≈α lπ
′−1◦π̂◦π|p((π′−1 ◦ π̂)·σ) (3.3)

Now, let π̆ = π′−1 ◦ π̂ ◦π and let σ̆ be the substitution such that σ̆(X) =
(π′−1·σ′)(X) for X ∈ V (l′), σ̆(X) = ((π′−1 ◦ π̂)·σ)(X) for X ∈ V (l), and
σ̆(X) = X otherwise, where we assume w.l.o.g. V (l′) ∩ V (l) = ∅. Then,
the statement (3.3) equals ∆ ` ∇′σ̆,∇π̆σ̆, l′σ̆ ≈α lπ̆|pσ̆.

(End of the proof of claim I)
Thus, ∇′∪∇π̆∪{l′ ≈ lπ̆|p} is unifiable. Hence we have Γ ` 〈Lπ̆θ[r′θ]p, rπ̆θ〉 ∈
BCP(R′, R) where 〈Γ, θ〉 is an mgu and so there is a substitution δ such that

∆ ` Γδ (3.4)

∀X ∈ X . ∆ ` Xθδ ≈α Xσ̆ (3.5)

Let u = Lπ̆θ[r′θ]p and v = rπ̆θ. In the following, we show claim II: with the
BCP Γ ` 〈u, v〉, part 2 of the statement of the lemma holds.
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(Proof of claim II) From the property (3.5) and Lemma 12, we have ∆ `
rπ̆θδ ≈α rπ̆σ̆. Hence ∆ ` vδ ≈α rπ

′−1◦π̂◦π((π′−1◦π̂)·σ), which means ∆ `
vπ̂
−1◦π′((π̂−1◦π′)·δ) ≈α rπσ. Now, let π̂′ = π̂−1◦π′ and δ′ = (π̂−1◦π′)·δ.

Then we have ∆ ` vπ̂′δ′ ≈α rπσ = s1. Also, from the property (3.4), we
have ∆ ` Γ π̂′δ′. It only remains to show ∆ ` uπ̂′δ′ ≈α s′. Again, from the
property (3.5) and Lemma 12, we have ∆ ` Lπ̆[r′]pθδ ≈α Lπ̆[r′]pσ̆. Hence

∆ ` uδ ≈α Lπ̆[r′]pσ̆ = Lπ̆σ̆[r′σ̆]p = Lπ
′−1◦π̂◦π((π′−1 ◦ π̂)·σ)[r′(π′−1·σ′)]p.

Equivalently, ∆ ` uπ̂−1◦π′((π̂−1◦π′)·δ) ≈α Lπσ[π̂−1·(r′π′σ′)]p. From this

and (3.2), we have ∆ ` uπ̂−1◦π′((π̂−1 ◦ π′)·δ) ≈α s[r′π
′
σ′]p, which means

∆ ` uπ̂′δ′ ≈α s[r′π
′
σ′]p = s′. (End of the proof of claim II)

ut

Before proceeding to Theorem 1, we state one more lemma.

Lemma 14. 1. If Γ ` s ≈α t and ∆ ` Γπθ then ∆ ` sπθ ≈α tπθ.
2. If Γ ` s→R t and ∆ ` Γπθ then ∆ ` sπθ →R t

πθ.
3. If Γ ` s−→q R t and ∆ ` Γπθ then ∆ ` sπθ −→q R tπθ.

Now we show the parallel closure theorem which states that −→q R is strongly
locally confluent modulo ≈α for a class of left-linear nominal rewriting systems.

Definition 8. A nominal rewriting system R is parallel closed if for any Γ `
〈u, v〉 ∈ BCP(R), Γ ` u (−→q R◦ ≈α) v. A nominal rewriting system R is weakly
orthogonal if it is left-linear and for any Γ ` 〈u, v〉 ∈ BCP(R), Γ ` u ≈α v.

Theorem 1 (Parallel closure theorem). Let R be a left-linear parallel closed
uniform rewriting system. If ∆ ` t −→q R t1 and ∆ ` t −→q R t2 then there exist
t′1 and t′2 such that ∆ ` t1 −→q R t′1, ∆ ` t2 −→q R t′2 and ∆ ` t′1 ≈α t′2.

Proof. Suppose ∆ ` t P1−→q R t1 and ∆ ` t P2−→q R t2 where P1 = {p11, . . . , p1m}
and P2 = {p21, . . . , p2n}. We set subterm occurrences αi = t|p1i(1 ≤ i ≤ m) and
βj = t|p2j (1 ≤ j ≤ n), and let Red in = {αi | ∃βj . αi ⊂ βj} ∪ {βj | ∃αi. βj ⊆ αi}
and Redout = {αi | ∀βj . αi 6⊂ βj} ∪ {βj | ∀αi. βj 6⊆ αi}. We define |Red in | as∑
γ∈Red in

|γ|. The proof of the claim is by induction on |Red in |.

– Case |Red in | = 0.
Then we can write t = C[s11, . . . , s1m, s21, . . . , s2n]p11,...,p1m,p21,...,p2n , t1 =
C[s′11, . . . , s

′
1m, s21, . . . , s2n] and t2 = C[s11, . . . , s1m, s

′
21, . . . , s

′
2n] where C is

some context, ∆ ` s1i →R s′1i(1 ≤ i ≤ m) and ∆ ` s2j →R s′2j(1 ≤ j ≤ n).
Hence, the claim follows by taking t′1 = t′2 = C[s′11, . . . , s

′
1m, s

′
21, . . . , s

′
2n].

– Case |Red in | > 0.
Suppose Redout = {s1, . . . , sh}. Then we can write t = C[s1, . . . , sh], t1 =
C[s11, . . . , sh1] and t2 = C[s12, . . . , sh2] where for each k with 1 ≤ k ≤ h,
∆ ` sk −→q R sk1, ∆ ` sk −→q R sk2 and one of them is at the root. Now,
to prove the claim, it is sufficient to show that for each k with 1 ≤ k ≤ h,
there exist s′k1 and s′k2 such that ∆ ` sk1 −→q R s′k1, ∆ ` sk2 −→q R s′k2 and
∆ ` s′k1 ≈α s′k2.
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Let 1 ≤ k ≤ h, and suppose ∆ ` sk
{ε}−→q R sk1 and ∆ ` sk

P−→q R sk2. (The
symmetric case is proved similarly.) Then there exists R ∈ R such that

∆ ` sk
ε→R sk1. Hence by Lemma 13, one of the following holds:

1. There exists a term ŝk such that ∆ ` sk1 −→q R ŝk ←R sk2.
2. There exist p ∈ P , R′ ∈ R, Γ ` 〈u, v〉 ∈ BCP(R′, R), s′k, π and θ

such that ∆ ` sk
p→R′ s

′
k

P\{p}−→q R sk2, ∆ ` Γπθ, ∆ ` s′k ≈α uπθ and
∆ ` sk1 ≈α vπθ.

If part 1 holds then the requirement is satisfied. So we treat the case where
part 2 holds. Since R is parallel closed, there exists w such that Γ ` u−→q R
w ≈α v. Then by Lemma 14(1) and (3), we have ∆ ` uπθ −→q R wπθ ≈α
vπθ ≈α sk1. Hence by Lemma 9, there exists ŝk1 such that ∆ ` s′k −→q R
ŝk1 ≈α wπθ ≈α sk1.
In the following, we intend to apply the induction hypothesis to the parallel

peak ∆ ` s′k
Q−→q R ŝk1 and ∆ ` s′k

P\{p}−→q R sk2.
Let P \{p} = {p1, . . . , pn′−1} (n′ ≥ 1). We are now considering a case where
sk = αi for some i (1 ≤ i ≤ m), and a set of occurrences {βj1 , . . . , βjn′} as

{βj | βj ⊆ αi}. Then, clearly
∑n′

l=1|βjl | ≤ |Red in |. We also have sk|p = βjl′
for some l′ (1 ≤ l′ ≤ n′), and {sk|p1 , . . . , sk|pn′−1

} = {s′k|p1 , . . . , s′k|pn′−1
} =

{βj1 , . . . , βjn′} \ {βjl′}. Now let Q = {q1, . . . , qm′}. Let γi′ = s′k|qi′ (1 ≤ i′ ≤
m′) and ρj′ = s′k|pj′ (1 ≤ j

′ ≤ n′−1), and let Red ′in = {γi′ | ∃ρj′ . γi′ ⊂ ρj′}∪
{ρj′ | ∃γi′ . ρj′ ⊆ γi′}. Then, |Red ′in | ≤

∑n′−1
j′=1 |ρj′ | <

∑n′−1
j′=1 |ρj′ | + |βjl′ | =∑n′

l=1|βjl |. Hence we can apply the induction hypothesis to the parallel peak

∆ ` s′k
Q−→q R ŝk1 and ∆ ` s′k

P\{p}−→q Rsk2, and obtain ŝ′k1 and s′k2 such that ∆ `
ŝk1 −→q R ŝ′k1, ∆ ` sk2 −→q R s′k2 and ∆ ` ŝ′k1 ≈α s′k2. Since ∆ ` ŝk1 ≈α sk1,
we have, by Lemma 9, some s′k1 such that ∆ ` sk1 −→q R s′k1 ≈α ŝ′k1 ≈α s′k2

as required. ut

We are now ready to show that →R is Church-Rosser modulo ≈α.

Corollary 1 (Church-Rosser modulo ≈α). If R is a left-linear parallel
closed uniform rewriting system, then →R is Church-Rosser modulo ≈α. In
particular, if R is a weakly orthogonal uniform rewriting system, then →R is
Church-Rosser modulo ≈α.

Proof. By Lemma 9, −→q R is strongly compatible with ≈α, and by Theorem 1,
−→q R is strongly locally confluent modulo ≈α. Hence by the results in [14] (see
also [15, Section 2.5]), −→q R is Church-Rosser modulo ≈α. Since →R ⊆ −→q R ⊆
→∗R by Lemma 5, we see that →R is Church-Rosser modulo ≈α. ut

As in the first-order term rewriting case [21], we can generalise the above
result by analysing overlaps at the root in the proof of Theorem 1.

Theorem 2. Suppose that R is a left-linear uniform rewriting system. Then,
R is Church-Rosser modulo ≈α if Γ ` u (−→q R◦ ≈α) v for any Γ ` 〈u, v〉 ∈
BCPin(R) and Γ ` u (−→q R◦ ≈α ◦ ←∗R) v for any Γ ` 〈u, v〉 ∈ BCPout(R),
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where BCPin(R) and BCPout(R) denote the sets of BCPs of R such that p 6= ε
and p = ε in the definition of BCP (Definition 4), respectively.

Proof. To show that −→q R is strongly locally confluent modulo ≈α, we prove a
modified statement of Theorem 1 with ∆ ` t2 →∗R t′2 instead of ∆ ` t2 −→q R t′2.
The proof proceeds in a similar way to that of Theorem 1. In the case where
Γ ` 〈u, v〉 ∈ BCP(R′, R) in part 2 is at the root, we use the assumption on
BCPout(R). ut

We demonstrate Theorem 2 on two examples.

Example 1. Consider a nominal signature with function symbols f and g. Let
R1 be the following left-linear uniform rewriting system:

R1 =

{
` f 〈[a]X,Y 〉 → f 〈[a]X, [a]X〉 (1-1)
` f 〈[a]a, Y 〉 → g (1-2)

In the following, we write down all patterns of the BCPs ofR1 and check whether
R1 satisfies the condition of Theorem 2.

First, consider BCPs induced by overlaps of (1-1) on its renamed variant,
which arise from the unification problem {f 〈[a]X,Y 〉 ≈ (f 〈[a]Z,W 〉)π|ε(=
f 〈[π(a)]Z,W 〉)}. If π(a) = a, then the BCP is ` 〈f 〈[a]Z, [a]Z〉, f 〈[a]Z, [a]Z〉〉,
for which ` f 〈[a]Z, [a]Z〉 ≈α f 〈[a]Z, [a]Z〉 holds. If π(a) = b, then the problem
{f 〈[a]X,Y 〉 ≈ f 〈[b]Z,W 〉} has an mgu 〈{a#Z}, {X := (a b)·Z, Y := W}〉.
Hence, the BCP in this case is a#Z ` 〈f 〈[a](a b)·Z, [a](a b)·Z〉, f 〈[b]Z, [b]Z〉〉,
for which we have a#Z ` f 〈[a](a b)·Z, [a](a b)·Z〉 ≈α f 〈[b]Z, [b]Z〉.

The BCP induced by overlaps of (1-2) on its renamed variant is only ` 〈g, g〉,
for which we have ` g ≈α g.

Next we consider BCPs induced by overlaps of (1-1) on (1-2) and vice versa.
The former arise from the unification problem {f 〈[a]X,Y 〉 ≈ (f 〈[a]a, Z〉)π|ε(=
f 〈[π(a)]π(a), Z〉)}. In either case of π(a) = a and π(a) = b, the BCP is
` 〈f 〈[a]a, [a]a〉, g〉, for which we have ` f 〈[a]a, [a]a〉 −→q R1

g. BCPs induced
by overlaps of (1-2) on (1-1) arise from the unification problem {f 〈[a]a, Y 〉 ≈
(f 〈[a]X,Z〉)π|ε(= f 〈[π(a)]X,Z〉)}. If π(a) = a, then the problem has an mgu
〈∅, {X := a, Y := Z}〉. Hence, the BCP in this case is ` 〈g, f 〈[a]a, [a]a〉〉, for
which we have ` g←∗R1

f 〈[a]a, [a]a〉. If π(a) = b, then the problem has an mgu
〈∅, {X := b, Y := Z}〉. Hence, the BCP in this case is ` 〈g, f 〈[b]b, [b]b〉〉, for
which we have ` g←∗R1

f 〈[b]b, [b]b〉.
We have seen that R1 satisfies the condition of Theorem 2. Thus we conclude

that R1 is Church-Rosser modulo ≈α. ut

The reader may wonder why the case analyses according to permutations in
the above example are necessary. This is because there exist rewriting systems
where choice of bound atoms in the same two rewrite rules can vary joinability
of the induced critical pairs (cf. [20, Example 12]). That means that one has to
check all combinations of atoms in the rules to guarantee confluence properties
of nominal rewriting systems.
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The next example demonstrates that our results can also be applied to nom-
inal rewriting systems that are not α-stable [19] (i.e., applying the same rewrite
step to two α-equivalent terms may result in terms that are not α-equivalent).
A typical example of a non-α-stable rewriting system is found in [19, Example
19] (unconditional eta-expansion). See also [3, Example 4.3].

Example 2. Consider a nominal signature with function symbols f and g. Let
R2 be the following left-linear uniform rewriting system:

R2 =

{
` f X → f [a]〈X,X〉 (2-1)
` [a]X → g (2-2)

Since R2 is not α-stable, the confluence criterion by orthogonality in [19] cannot
be applied. In the following, we write down all patterns of the BCPs of R2 and
check whether R2 satisfies the condition of Theorem 2.

First, consider BCPs induced by overlaps of (2-1) on its renamed variant,
which arise from the unification problem {f X ≈ (f Y )π|ε(= f Y )}. If π(a) = a,
then the BCP is ` 〈f [a]〈Y, Y 〉, f [a]〈Y, Y 〉〉, for which we have ` f [a]〈Y, Y 〉 ≈α
f [a]〈Y, Y 〉. If π(a) = b, then the BCP is ` 〈f [a]〈Y, Y 〉, f [b]〈Y, Y 〉〉, for which we
have ` f [a]〈Y, Y 〉 →R2 f g←R2 f [b]〈Y, Y 〉.

Next we consider BCPs induced by overlaps of (2-2) on its renamed variant,
which arise from the unification problem {[a]X ≈ ([a]Y )π|ε(= [π(a)]Y )}. If
π(a) = a, then the BCP is ` 〈g, g〉, for which we have ` g ≈α g. If π(a) = b,
then the problem {[a]X ≈ [b]Y } has an mgu 〈{a#Y }, {X := (a b)·Y }〉. Hence,
the BCP in this case is a#Y ` 〈g, g〉, for which we have a#Y ` g ≈α g.

We have seen that R2 satisfies the condition of Theorem 2. Thus we conclude
that R2 is Church-Rosser modulo ≈α. ut

4 Conclusion

We have presented proofs of Church-Rosser modulo ≈α for some classes of left-
linear uniform nominal rewriting systems, extending Huet’s parallel closure the-
orem and its generalisation on confluence of left-linear term rewriting systems.
In the presence of critical pairs, the proofs are more delicate than the previous
proofs for orthogonal uniform nominal rewriting systems. Our theorems can be
applied to nominal rewriting systems that are not α-stable, as we have seen in
an example.

In traditional higher-order rewriting frameworks (e.g. [12, 13]), α-equivalent
terms are always identified in contrast to the framework of nominal rewriting.
This makes effects on confluence in the two approaches rather different. In ad-
dition to the difference revealed in [20], we have seen that our results on the
parallel closure theorem and its generalisation are incomparable with those in
traditional higher-order rewriting formalisms, since nominal rewriting systems
that are not α-stable cannot be represented by any systems in traditional re-
writing formalisms. Also, it is known that under explicit α-equivalence, conflu-
ence of β-reduction in λ-calculus is already quite hard to show (cf. [23]). Up to
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our knowledge, there are no attempts to accomplish a similar effect in tradition-
al higher-order rewriting frameworks.

On the other hand, it is known that in the case of traditional higher-order
rewriting, results on confluence by parallel closed critical pairs can be extended
to those by development closed critical pairs [16]. However, a rigorous proof of
it becomes more complicated than the parallel case, and in the present paper,
we have not tried that extension for the case of nominal rewriting. We expect
that the extension is possible but it is not entirely an easy task.

Using the combination of all the methods of [19, 20] and the present paper,
we have implemented a confluence prover [1]. We use an equivariant unification
algorithm [2, 6] to check whether ∇1 ∪ ∇π2 ∪ {l1 ≈ lπ2 |p} is unifiable for some
permutation π, for given ∇1,∇2, l1, l2|p. However, that is not enough to gener-
ate concrete critical pairs and check their joinability, parallel closedness, etc. It
is necessary to instantiate atom variables and permutation variables from con-
straints obtained as the solutions of equivariant unification problems, and this
process is not obvious. We refer to [1] for all details of the implementation and
experiments.
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