
Dealing with Non-Orientable Equations in

Rewriting Induction

Takahito Aoto

Research Institute of Electrical Communication, Tohoku University, Japan
aoto@nue.riec.tohoku.ac.jp

Abstract. Rewriting induction (Reddy, 1990) is an automated proof
method for inductive theorems of term rewriting systems. Reasoning by
the rewriting induction is based on the noetherian induction on some
reduction order. Thus, when the given conjecture is not orientable by the
reduction order in use, any proof attempts for that conjecture fails; also
conjectures such as a commutativity equation are out of the scope of the
rewriting induction because they can not be oriented by any reduction
order. In this paper, we give an enhanced rewriting induction which can
deal with non-orientable conjectures. We also present an extension which
intends an incremental use of our enhanced rewriting induction.

1 Introduction

Properties of programs are often proved by induction on the data structures
such as natural numbers or lists. Such properties are called inductive proper-
ties of programs. Inductive properties are indispensable in formal treatments of
programs. Thus automated reasoning of inductive properties is appreciated in
techniques such as the program verification and the program transformation.

Term rewriting systems (TRSs) is a computational model based on equational
logic. Equational inductive properties of TRSs are called inductive theorems,
and automated reasoning methods for inductive theorems have been investigated
many years [3, 4, 7–12, 15]. In this paper, we extend rewriting induction proposed
by Reddy [12], which is one of such inductive theorem proving methods.

The rewriting induction falls in a category of implicit induction methods;
in implicit induction, induction scheme is not specified explicitly—such methods
are different from explicit induction methods that stem from [5]. Historically, the
implicit induction method has been investigated mainly in the context of induc-
tionless induction [7–9, 11, 15]. Usually inductionless induction methods require
(kinds of) the Church-Rosser property; while in the rewriting induction, the ter-
mination property is needed instead—Koike and Toyama [10] revealed that the
rewriting induction1 and the inductionless induction have different underlying
principles. In this context, the underlying principle of (the inductive theorem

1 Renaming the original “term rewriting induction” [6, 12] to “rewriting induction” is
proposed by them.

proving part of) the inductive theorem prover SPIKE [3, 4] can be also classi-
fied as a rewriting induction method. The rewriting induction is also useful as a
program synthesis [6, 13].

Inductive proofs by the rewriting induction are based on the noetherian in-
duction on some reduction order. Thus, when the given conjecture is not ori-
entable by the reduction order in use, any proof attempt for that conjecture
fails; also conjectures such as a commutativity equation are out of the scope of
the rewriting induction because they can not be oriented by any reduction order.

To overcome this defect, several approaches have been proposed. One is to use
rewriting modulo equations [12]. Another is to use ordered rewriting technique
[2, 6] which rewrites a term by possibly non-oriented equations when it simplifies
(w.r.t. some ordering). The former appears only in a short remark in [12], and, as
far as the author knows, the idea is not explored since then. The latter approach
has been embodied in the inductive theorem prover SPIKE. In this paper, we
present an enhanced rewriting induction designed following the first approach.

In our enhanced rewriting induction, a reduction order whose equational
classes are “coarser” is more suitable to prove non-oriented conjectures. On the
other hand, such a reduction order may fail to handle some equations orientable
by other reduction orders. This observation leads us to introduce incremental
rewriting induction in which already-proved lemmas can be applied more easily.

The rest of the paper is organized as follows. After fixing basic notations
(Section 2), we review the principle and the procedure of the rewriting induc-
tion (Section 3). In Section 4, we give an enhanced rewriting induction that
can deal with non-orientable conjectures and show its correctness. In Section 5,
we introduce incremental rewriting induction which intends an incremental use
of the enhanced rewriting induction. In Section 6, we conclude our result and
compare our approach and the ordered rewriting approach.

2 Preliminaries

Let us fix some notations in abstract reduction systems (ARSs). Let → be a
binary relation on a set A. The reflexive transitive closure (transitive closure,

symmetric closure, equivalence closure) of→ is denoted by
∗→ (

+→,↔,
∗↔, respec-

tively). The relation → is well-founded (denoted by SN(→)) when there exists
no infinite chain a0 → a1 → · · · . An element a ∈ A is said to be normal when
there is no b ∈ A such that a → b. The set of normal elements is denoted by
NF(→). The union→i∪→j of two binary relations→i and→j is abbreviated as
→i∪j . The composition is denoted by ◦. We denote by →i/→j the relation de-

fined by
∗↔j ◦ →i ◦ ∗↔j . The relation→i/→j is abbreviated as→i/j . We assume

/ associates stronger than ∪; /,∪ associate stronger than closure operations so

that, for example,
∗↔1∪2 stands for the equivalence closure of →1 ∪ →2.

We next introduce notations on term rewriting used in this paper. (See [1, 14]
for details.) The sets of (arity-fixed) function symbols and variables are denoted
by F and V , respectively. T(F , V) is the set of terms over F , V . We use ≡
to denote the syntactical equality on terms. The set of variables contained in

t is denoted by V (t). root(t) is the root symbol of a term t. The domain of
a substitution σ is denoted by dom(σ). A term σ(t) is called an instance of
the term t; σ(t) is also written as tσ. We denote by mgu(s, t) the most general
unifier of terms s, t. A pair l→ r of terms satisfying conditions (1) root(l) ∈ F ;
(2) V (r) ⊆ V (l) is said to be a rewrite rule. A term rewriting system (TRS) is
a set of rewrite rules. When the underlying set of function symbols is not clear,
we refer to a pair 〈F ,R〉 as a TRS—however, we assume that the set of function
symbols are those appearing in rewrite rules in this paper. The rewrite relation
of a TRS R is denoted by s→R t. An equation l

.
= r is just a pair 〈l, r〉 of terms

in T(F , V). When we write l
.
= r, we do not distinguish 〈l, r〉 and 〈r, l〉.

Function symbols that are roots of some lhs of rewrite rules are called defined
function symbols ; we write DR the set {root(l) | l → r ∈ R} of defined function
symbols (of a TRSR). WhenR is obvious from its context, we omit the subscript

R. The set of defined symbols appearing in a term t is denoted by D(t). The set
C = F\D of function symbols is the set of constructor symbols. Terms in T(C, V)
are said to be constructor terms ; substitution σ such that σ(x) ∈ T(C, V) for any
x ∈ dom(σ) is called a constructor substitution. A term of the form f(c1, . . . , cn)
for some f ∈ D and c1, . . . , cn ∈ T(C, V) is said to be basic. We write u E s
to express that u is a subterm of s. The set {u E s | ∃f ∈ D. ∃c1, . . . , cn ∈
T(C, V). u ≡ f(c1, . . . , cn)} of basic subterms of s is written as B(s).

A term t is said to be ground when V (t) = ∅. T(F) is the set of ground
terms. When tσ ∈ T(F), tσ is called a ground instance of t. Ground instances
of rewrite rules, equations, etc. are defined similarly. A ground substitution is
a substitution σg such that σg(x) ∈ T(F) for any x ∈ dom(σg). A TRS R is
said to be quasi-reducible if no ground basic term is normal. In this paper, we
assume w.l.o.g. that tσg is ground (i.e. V (t) ⊆ dom(σg)) when we speak of an
instance tσg of t by a ground substitution σg . An inductive theorem of a TRS R
is an equation that is valid on T(F), that is, s

.
= t is an inductive theorem when

sσg
∗↔R tσg holds for any ground instance sσg

.
= tσg .

A relation R on T(F , V) is said to be closed under substitution when sRt⇒
sσ R tσ for any substitution σ; closed under context when sR t⇒ C[s]RC[t] for
any context C. A reduction order is a well-founded partial order that is closed
under substitution and context. A quasi-order % is a reduction quasi-order when
it is closed under substitution and context and its strict part � = % \ - is a
reduction order. We write the relation % ∩- as ≈.

3 Rewriting Induction

Rewriting induction (RI, for short) is an automated inductive theorem proving
method proposed by Reddy [12]. The inference system of rewriting induction
deals with a set E of equations and a set H of rewrite rules. Intuitively, E is
a set of equations to be proved and H is a set of induction hypotheses and
theorems already proved. In Figure 1, we list the (downward) inference rules
of the rewriting induction. Here] denotes the disjoint union. We note that
the direction of each equation is not distinguished. R and > are a TRS and a

Simplify

〈E] {s
.
= t}, H〉

〈E ∪ {s′
.
= t}, H〉

s →R∪H s′

Delete
〈E] {s

.
= s}, H〉

〈E, H〉
Expand

〈E] {s
.
= t}, H〉

〈E ∪ Expdu(s, t), H ∪ {s → t}〉
u ∈ B(s), s > t

Fig. 1. Inference rules of the rewriting induction

reduction order given as inputs. The set Expdu(s, t) of equations is defined like
this:

Expdu(s, t) = {C[r]σ
.
= tσ | s ≡ C[u], σ = mgu(u, l), l → r ∈ R, l:basic}

The following property of Expd will be used later.

Lemma 1 (property of Expd). Let R be a quasi-reducible TRS and u ∈ B(s).
Then
(1) sσg →R ◦ ↔Expdu(s,t) tσg for any ground constructor substitution σg;

(2) v ↔Expdu(s,t) w ⇒ v
∗↔R∪{s

.
=t} w.

Proof. (1) Since u is basic and σg is a ground constructor substitution, uσg is a
basic ground term. Thus, by the quasi-reducibility of R, there exists l → r ∈ R
such that uσg is an instance of l. W.l.o.g. we may assume V (l) ∩ V (s) = ∅ and
thus by extending σg one can let uσg ≡ lσg . Then σg is a constructor unifier
of u and l and thus we have σg = θg ◦ σ for some constructor substitution
θg , where σ = mgu(u, l). Then by letting s ≡ C[u], we have sσg ≡ C[u]σg ≡
Cσg [uσθg] ≡ Cσg [lσθg] →R Cσg [rσθg] ≡ C[r]σθg ↔Expdu(s,t) tσθg ≡ tσg . (2)

Let v ↔Expdu(s,t) w. Then v ≡ Ĉ[C[r]σσ̂], w ≡ Ĉ [tσσ̂] (or w ≡ Ĉ [C[r]σσ̂],

v ≡ Ĉ[tσσ̂]) for some context Ĉ and substitution σ̂, where σ = mgu(u, l), s ≡
C[u], l → r ∈ R. Then we have v ≡ Ĉ [C[r]σσ̂] ←R Ĉ[C[l]σσ̂] ≡ Ĉ[Cσ[lσ]σ̂] ≡
Ĉ[Cσ[uσ]σ̂] ≡ Ĉ [C[u]σσ̂] ≡ Ĉ[sσσ̂]↔{s

.
=t}≡ Ĉ[tσσ̂] ≡ w. �

Definition 1 (rewriting induction). We write 〈E, H〉 RI 〈E′, H ′〉 when
〈E′, H ′〉 is obtained from 〈E, H〉 by applying one of the inference rules of Figure

1. The reflexive transitive closure of RI is denoted by
∗
 RI. We sometimes put

superscripts s,d,e to indicate which inference rule is used.

The rewriting induction procedure starts by putting conjectures into E and
letting H = ∅. Then the procedure rewrites 〈E, H〉 by applying one of the
inference rules. If it eventually becomes of the form 〈∅, H ′〉 then the procedure
returns “success”—this means that the conjectures are inductive theorems of R.
On the other hand, when none of the rules are applicable, it reports “failure”,

or it also may run forever (“divergence”), which means the rewriting induction
fails to prove that the conjectures are inductive theorems.

Koike and Toyama [10] revealed that the underlying principle of rewriting
induction can be formulated in terms of ARSs as below. The proof is by the
noetherian induction on >. Later, we will give a proof of a more general theorem.

Proposition 1 (principle of rewriting induction [10]). Let →1, →2 be
binary relations on a set A. Let > be a well-founded partial order on A. Suppose

(i) →1∪2 ⊆ >

(ii) →2 ⊆ →1 ◦ ∗→1∪2 ◦ ∗←1∪2.
Then

∗↔1 =
∗↔1∪2.

The following proposition states the correctness of the rewriting induction.
The proof basically proceeds by applying Proposition 1 to binary relations →R

and →H on the set T(F) of ground terms. Later, we will give a proof of a more
general theorem.

Proposition 2 (correctness of rewriting induction [12]). Let R be a quasi-
reducible TRS, E a set of equations, > a reduction order satisfying R ⊆ >. If
there exists a set H such that 〈E, ∅〉 ∗

 RI 〈∅, H〉 then equations in E are inductive
theorems of R.

Example 1 (rewriting induction). Let R and E be a TRS and a set of equations
given as below.

R =

{

plus(0, y) → y
plus(s(x), y)→ s(plus(x, y))

}

E =
{

plus(plus(x, y), z)
.
= plus(x, plus(y, z))

}

Let > be a lexicographic path order [1] based on precedence plus > s > 0. Below
we show how the rewriting induction for proving E proceeds based on the TRS
R and the reduction order >.

〈{

plus(plus(x, y), z)
.
= plus(x, plus(y, z))

}

,
{}〉

 e
RI

〈

{

plus(y0, z)
.
= plus(0, plus(y0, z))

plus(s(plus(x1, y1)), z)
.
= plus(s(x1), plus(y1, z))

}

{

plus(plus(x, y), z)→ plus(x, plus(y, z))
}

〉

 s
RI

s
RI

s
RI

〈

{

plus(y0, z)
.
= plus(y0, z)

s(plus(plus(x1, y1), z))
.
= s(plus(x1, plus(y1, z))

}

{

plus(plus(x, y), z)→ plus(x, plus(y, z))
}

〉

 s
RI

d
RI

d
RI

〈{}

,
{

plus(plus(x, y), z)→ plus(x, plus(y, z))
}〉

The procedure ends in the form 〈∅, H〉. Thus from Proposition 2 it follows that
the equation in E is an inductive theorem of R.

4 Proving Non-Orientable Conjectures

A key of the rewriting induction is the Expand rule. But Expand rule is applicable
only to the equation that can be oriented by the input reduction order. Thus,
when the given conjecture is not orientable by the given reduction order, the
proof of that conjecture always fails.

Example 2 (failure of rewriting induction). Let R be a TRS for the addition of
natural numbers.

R =

{

plus(0, y) → y
plus(s(x), y)→ s(plus(x, y))

}

The following equation e expresses the commutativity of addition.

e = plus(x, y)
.
= plus(y, x)

The equation e is an inductive theorem ofR. However, because neither plus(x, y) >
plus(y, x) nor plus(y, x) > plus(x, y) holds, the rewriting induction procedure
starting with 〈{e}, ∅〉 stops immediately having no rules to apply.

To deal with non-orientable equations, Reddy proposed to use →R/→H in-
stead of →R ∪→H (Remark 14 in [12]); however, he does not seem to elaborate
on this. In fact, a naive extension seems to lead unsound reasoning—this is illus-
trated by the following proposition obtained by modifying Propsition 1 suitably
for →R/→H .

Conjecture 1 (incorrect conjecture). Let →1, →2 be binary relations on a set A.
Let % be a well-founded quasi-order on A. Suppose

(i) →1 ⊆ �
(ii) →2 ⊆ ≈

(iii) →2 ⊆ →1 ◦ ∗→1/2 ◦ ∗←1/2.
Then

∗↔1 =
∗↔1∪2.

Example 3 (a counterexample to the Conjecture 1). Consider a set A = {a, b, c}
and relations→1 = {〈a, b〉} and→2 = {〈a, c〉} on A. Let % be a quasi-order such
that c ≈ a � b. Then conditions (i),(ii) clearly hold. Since a →1 b ←1 a ↔2 c,

condition (iii) holds also. But we have c
∗↔1∪2 b and c 6 ∗↔1 b.

In Figure 2, we list the inference rules in which R ∪H is replaced by R/H .
This inference system is not sound as the following example shows.

Example 4 (incorrect inference). Let R be a TRS for the append of two lists:

R =

{

app(nil, ys) → ys
app(cons(x, xs), ys) → cons(x, app(xs, ys))

}

.

The append operation is not commutative, hence

app(xs, ys)
.
= app(ys, xs) (1)

Simplify

〈E] {s
.
= t}, H〉

〈E ∪ {s′
.
= t}, H〉

s →R/H s′

Delete
〈E] {s

.
= t}, H〉

〈E, H〉
s

∗
↔H t

Expand

〈E] {s
.
= t}, H〉

〈E ∪ Expdu(s, t), H ∪ {s
.
= t}〉

u ∈ B(s), s ≈ t

Fig. 2. Inference rules with rewriting modulo equations(not sound)

is not an inductive theorem of R. However, by taking % as a recursive path order
[1] based on the precedence app � cons � nil, the inference of modified rewriting
induction successfully proves the conjecture (1).

In Expand rule in Figure 2, for v
.
= w in Expdu(s, t), only v is “smaller” than

sσ while w is “just as big” as sσ. Hence, application of the inductive hypothesis
to w is unsound. This observation suggests a new kind of Expand rule for non-
orientable equations (Expand2, below), which expands both lhs and rhs of the
equation.

Simplify

〈E] {s
.
= t}, H, G〉

〈E ∪ {s′
.
= t}, H, G〉

s →(R∪H)/G s′

Delete
〈E] {s

.
= t}, H, G〉

〈E, H, G〉
s

∗
↔G t

Expand

〈E] {s
.
= t}, H, G〉

〈E ∪ Expdu(s, t), H ∪ {s → t}, G〉
u ∈ B(s), s � t

Expand2

〈E] {s
.
= t}, H, G〉

〈E ∪ Expd2u,v(s, t),H, G ∪ {s
.
= t}〉

u ∈ B(s), v ∈ B(t), s ≈ t

Fig. 3. Inference rules of eRI

Here, Expd2u,v(s, t) is defined like this:

Expd2u,v(s, t) =
⋃

{

Expdvσ(tσ, s′) | 〈s′, tσ〉 ∈ Expdu(s, t)
}

Definition 2 (enhanced rewriting induction). We write 〈E, H, G〉 eRI

〈E′, H ′, G′〉 when 〈E′, H ′, G′〉 is obtained from 〈E, H, G〉 by applying one of the
inference rules of Figure 3. The reflexive transitive closure of eRI is denoted
by

∗
 eRI. We sometimes put superscripts s,d,e,e2 to indicate which inference rule

is used.

Example 5 (application of Expand2 rule). Let

R =

{

plus(0, y) → y
plus(s(x), y) → s(plus(x, y))

}

,

s
.
= t = plus(x, y)

.
= plus(y, x). Then we have

Expd2s,t(s, t) =







0
.
= 0

s(x1)
.
= s(plus(x1, 0))

s(plus(x3, s(y3)))
.
= s(plus(y3, s(x3)))







.

Note that an equation s(plus(x2, 0))
.
= s(x2) which is also included in Expd2s,t(s, t)

is omitted, since this equation is same as the second one (as an equation).

Lemma 2 (property of Expd2). Let R be a quasi-reducible TRS and let
u ∈ B(s) and v ∈ B(t). Then
(1) sσg →R ◦ ↔Expd2u,v(s,t) ◦ ←R tσg for any ground constructor substitution
σg;

(2) q ↔Expd2u,v(s,t) w ⇒ q
∗↔R∪{s

.
=t} w.

Proof. (1) Let l → r ∈ R, l: basic, σ = mgu(u, l), s ≡ C[u]. Then, by Lemma 1
(1), sσg →R C[r]σθg ↔{C[r]σ

.
=tσ} tσθg ≡ tσg for some 〈C[r]σ, tσ〉 ∈ Expdu(s, t)

and constructor substitution θg. Since σ is a constructor substitution and v ∈
B(t), we know vσ ∈ B(tσ). Thus applying Lemma 1 (1) once again, we have
tσθg →R ◦ ↔Expdvσ(tσ,C[r]σ) C[r]σθg . Thus sσg →R C[r]σθg ↔Expd2u,v(s,t)

◦ ←R tσθg ≡ tσg . (2) Suppose q ↔Expd2u,v(s,t) w. Then, by definition, there

exists 〈s′, tσ〉 ∈ Expdu(s, t) such that q ↔Expdvσ(tσ,s′) w, where σ = mgu(l, u),
l → r ∈ R, l: basic. Then σ is a constructor substitution and thus vσ ∈ B(tσ).

Then by Lemma 1 (2) q
∗↔R∪{s′

.
=tσ} w. Therefore we have q

∗↔R∪Expdu(s,t) w.

By applying Lemma 1 (2) once again, we have q
∗↔R∪{s

.
=t} w. �

The soundness of the enhanced rewriting induction is based on the following
alternative principle.

Lemma 3 (principle of enhanced rewriting induction). Let →i (1 ≤ i ≤
3) be binary relations on a set A, and % be a well-founded quasi-order on A.
Suppose

(i) →1∪2 ⊆ �
(ii) →3 ⊆ ≈

(iii) →2 ⊆ →1 ◦ ∗→(1∪2)/3 ◦ ∗↔3 ◦ ∗←(1∪2)/3

(iv) →3 ⊆ →1 ◦ ∗→(1∪2)/3 ◦ ∗↔3 ◦ ∗←(1∪2)/3 ◦←1

(v) ∀x, y ∈ NF(→(1∪2)/3). (x
∗↔3 y ⇒ x = y).

Then
∗↔1 =

∗↔1∪2∪3.

Proof. It suffices to show ⊇. For this, we first show by noetherian induction on
� that

for any x ∈ A [∀y ∈ A. (x
∗→(1∪2)/3 y ⇒ x

∗↔1 y)] (2)

holds.
(Base Step) Then x = y and thus x

∗↔1 y trivially holds.
(Induction Step) The case when x ∈ NF(→(1∪2)/3) follows immediately; so,

suppose x
∗↔3 u→1∪2 v

∗↔3 z
∗→(1∪2)/3 y. Since x � z, it follows

z
∗↔1 y (3)

by induction hypothesis.
We now claim that

a→3 b⇒ a
∗↔1 b for any a, b - x (4)

We note that it immediately follows from this that

x
∗↔1 u and v

∗↔1 z (5)

Suppose a→3 b. Then by condition (iv) we have

a→1 c
∗→(1∪2)/3 c′

∗↔3 d′
∗←(1∪2)/3 d←1 b

for some c, c′, d, d′. By induction hypothesis we have c
∗↔1 c′ and d′

∗↔1 d. If
c′, d′ ∈ NF(→(1∪2)/3) then the claim follows from the condition (v). So, suppose

c′ /∈ NF(→(1∪2)/3). Then by conditions (i),(ii), c′
+→(1∪2)/3 n for some n ∈

NF(→(1∪2)/3). Then we have d′ ∗↔3 c′
+→(1∪2)/3 n and hence d

∗→(1∪2)/3 n. Thus
we have

a→1 c
∗→(1∪2)/3 n

∗←(1∪2)/3 d←1 b

Then by the induction hypothesis a →1 c
∗↔1 n

∗↔1 d ←1 b follows. Since the
case d′ /∈ NF(→(1∪2)/3) is shown similarly, the claim (4) has been shown.

It remains to show
u

∗↔1 v (6)

The case when u→1 v is trivial. So, suppose u→2 v. By condition (iii), we have

u→1 w
∗→(1∪2)/3 w′ ∗↔3 v′

∗←(1∪2)/3 v

Since x � w, v, we have w
∗↔1 w′ and v′

∗↔1 v by induction hypothesis. Then, as
above, one can suppose w.l.o.g. w′, v′ ∈ NF(→(1∪2)/3). Thus the claim follows
from the condition (v). Thus by (3), (5), (6), the proof of the claim (2) has been
completed.

Next we show →3 ⊆ ∗↔1. This can be proved same as the proof of the claim
(4), except that this time we use already proved claim (2) instead of the induction
hypothesis.

Finally, the statement of the lemma follows from the fact
∗→1∪2∪3 ⊆ ∗→(1∪2)/3∪

∗↔3. �

Below we prove the correctness of the enhanced rewriting induction. In re-
maining lemmata in this section, we assume that the TRS R is quasi-reducible
and that % is a reduction quasi-order satisfying R ⊆ �.

Lemma 4 (invariance). Let 〈En, Hn, Gn〉 eRI 〈En+1, Hn+1, Gn+1〉. Then
∗↔R∪En∪Hn∪Gn

=
∗↔R∪En+1∪Hn+1∪Gn+1

on T(F).

Proof. Use Lemma 1 (2) and Lemma 2 (2). �

Lemma 5 (property of En). Let 〈En, Hn, Gn〉 ∗
 eRI 〈∅, H], G]〉. Then↔En

⊆
∗→(R∪H])/G] ◦ ∗↔G] ◦ ∗←(R∪H])/G] on T(F).

Proof. By induction on the length of 〈En, Hn, Gn〉 ∗
 eRI 〈∅, H], G]〉. �

Lemma 6 (property of H]). Let 〈En, Hn, Gn〉 ∗
 eRI 〈∅, H], G]〉. Then →H]

⊆ →R ◦ ∗→(R∪H])/G] ◦ ∗↔G] ◦ ∗←(R∪H])/G] on T(F).

Proof. Suppose s→ t ∈ H], sg →{s→t} tg , and let sg ≡ Cg [sσg], tg ≡ Cg [tσg].
It suffices to consider the case when σg(x) ∈ NF(→R) for any x ∈ V (s). For,

by SN(→R), there exists a substitution σ̂g such that σg(x)
∗→R σ̂g(x) ∈ NF(→R)

for any x ∈ V (s). Thus if once we have shown Cg [sσ̂g]→R ◦ ∗→(R∪H])/G] ◦ ∗↔G] ◦
∗←(R∪H])/G]Cg [tσ̂g], then by Cg [sσg]

∗→R Cg [sσ̂g], Cg [tσg]
∗→R Cg [tσ̂g], we would

have Cg [sσg]→R ◦ ∗→(R∪H])/G] ◦ ∗↔G] ◦ ∗←(R∪H])/G]Cg [tσg].
Thus let us suppose that σg(x) ∈ NF(→R) for any x ∈ V (s). Then by

the quasi-reducibility of R, σg is a constructor substitution. For some n, we

have 〈E0, ∅, ∅〉 ∗
 eRI 〈En, Hn, Gn〉 eRI 〈En+1, Hn+1, Gn+1〉 ∗

 eRI 〈∅, H], G]〉,
Hn+1 = Hn ∪ {s → t} where En = E] {s .

= t}, En+1 = E ∪ Expdu(s, t),
u ∈ B(s), s � t. Then by Lemma 1 (1) we have sσg →R ◦ ↔Expdu(s,t) tσg .
Thus sg ≡ Cg [sσg] →R ◦ ↔En+1

Cg [tσg] ≡ tg . Therefore, by Lemma 5, sg →R

◦ ∗→(R∪H])/G] ◦ ∗↔G] ◦ ∗←(R∪H])/G]tg. �

Lemma 7 (property of G]). Let 〈En, Hn, Gn〉 ∗
 eRI 〈∅, H], G]〉. Then ↔G]

⊆ →R ◦ ∗→(R∪H])/G] ◦ ∗↔G] ◦ ∗←(R∪H])/G] ◦←R on T(F).

Proof. Similar to Lemma 6 using Lemma 2 (1) instead of Lemma 1 (1).

Theorem 1 (correctness of enhanced rewriting induction). Let R be a
quasi-reducible TRS, E a set of equations, % a reduction quasi-order satisfying
R ⊆ �. If there exist sets H, G (of rewrite rules and of equations, respectively)

such that 〈E, ∅, ∅〉 ∗
 eRI 〈∅, H, G〉, then equations in E are inductive theorems of

R.

Proof. By repeatedly applying Lemma 4, from 〈E, ∅, ∅〉 ∗
 eRI 〈∅, H, G〉, it follows

that
∗↔E∪R =

∗↔R∪H∪G on T(F). Therefore it suffices to show
∗↔R∪H∪G =

∗↔R

holds on T(F). We apply Lemma 3 for A = T(F), →1 = →R, →2 = →H , and
→3 =→G.

By R∪H ⊆ �, G ⊆ ≈, the conditions (i),(ii) of Lemma 3 hold. The condition
(iii) holds by Lemma 6 and (iv) by Lemma 7. Also by the side conditions of
Expand2 rule, we have B(s) 6= ∅ and B(t) 6= ∅ for any s

.
= t ∈ G. Thus by the

quasi-reducibility of R, sg
+↔G tg ⇒ sg, tg /∈ NF(→R) for any sg, tg . Hence the

condition (v) holds. Therefore, by Lemma 3,
∗↔R =

∗↔R∪H∪G. �

Example 6 (enhanced rewriting induction). Let R and E be as follows:

R =

{

plus(0, y) → y
plus(s(x), y)→ s(plus(x, y))

}

E =
{

plus(x, y)
.
= plus(y, x)

}

Let % be a recursive path order based on the precedence plus � s � 0. Then the
eRI works as follows.

〈{

plus(x, y)
.
= plus(y, x)

}

,
{}

,
{}〉

 e2

〈

{

0
.
= 0, s(x1)

.
= s(plus(x1, 0))

s(plus(x2, s(y2)))
.
= s(plus(y2, s(x2)))

}

{}

,
{

plus(x, y)
.
= plus(y, x)

}

〉

 d s d

〈
{

s(plus(x2, s(y2)))
.
= s(plus(y2, s(x2)))

}

{}

,
{

plus(x, y)
.
= plus(y, x)

}

〉

 s s d
〈{}

,
{}

,
{

plus(x, y)
.
= plus(y, x)

}〉

By Theorem 1, the equation in E is an inductive theorem of R.

5 Incremental proofs by rewriting induction

In the enhanced rewriting induction, a reduction order whose equational classes
are “coarser” is more suitable to prove non-oriented conjectures. On the other
hand, such a reduction order may fail to handle some equations orientable by
other reduction orders.

Example 7 (handling multiple conjectures). Let R and E be as follows:

R =















plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0

times(s(x), y) → plus(times(x, y), y)















E =







plus(x, y)
.
= plus(y, x)

plus(x, plus(y, z))
.
= plus(plus(x, y), z)

times(x, y)
.
= times(y, x)







The recursive path order can handle the commutativity equations but not the
associativity equation. To the contrary, the lexicographic path order can handle
the associativity equations but not the commutativity equations. As we will see,
we need both commutativity and associativity of plus to prove the commutativity
of times and thus eRI can not handle the commutativity of times.

This observation leads us to introduce incremental rewriting induction in
which already-proved lemmas can be applied more easily. The incremental rewrit-
ing induction can employ different reduction orders in each phase so that it can
be also benefited from variations of reduction orders.

We first formulate abstract principle of incremental rewriting induction. The
proof is similar to that of Lemma 3.

Lemma 8 (principle of incremental rewriting induction). Let →i (1 ≤
i ≤ 4) be a relation on a set A, and % be a well-founded quasi-order on A.
Suppose

(i) →1∪2 ⊆ �
(ii) →3 ⊆ ≈

(iii) →4 ⊆ ∗↔1 ∩%
(iv) →2 ⊆ →1 ◦ ∗→((1∪2)/3)∪4 ◦ (

∗↔3 ∪ ∗↔1) ◦ ∗←((1∪2)/3)∪4

(v) →3 ⊆ →1 ◦ ∗→((1∪2)/3)∪4 ◦ (
∗↔3 ∪ ∗↔1) ◦ ∗←((1∪2)/3)∪4 ◦←1

(vi) ∀x, y ∈ NF(→(1∪2)/3). (x
∗↔3 y ⇒ x = y).

Then
∗↔1 =

∗↔1∪2∪3∪4.

In Figure 4, we list inference rules designed based on this abstract principle.

Definition 3 (incremental rewriting induction). We write 〈E, H, G〉 iRI

〈E′, H ′, G′〉 when 〈E′, H ′, G′〉 is obtained from 〈E, H, G〉 by applying one of the
inference rules of Figure 4. The reflexive transitive closure of iRI is denoted by
∗
 iRI. We put superscripts s,s2,d,d2,e,e2 to indicate which inference rule is used.

Simplify

〈E] {s
.
= t}, H, G〉

〈E ∪ {s′
.
= t}, H, G〉

s →(R∪H)/G s′

Simplify2

〈E] {s
.
= t}, H, G〉

〈E ∪ {s′
.
= t}, H, G〉

s
∗
↔R∪E s′, s % s′

Delete
〈E] {s

.
= t}, H, G〉

〈E, H, G〉
s

∗
↔G t

Delete2
〈E] {s

.
= t}, H, G〉

〈E, H, G〉
s

∗
↔R∪E t

Expand

〈E] {s
.
= t}, H, G〉

〈E ∪ Expdu(s, t), H ∪ {s → t}, G〉
u ∈ B(s), s � t

Expand2

〈E] {s
.
= t}, H, G〉

〈E ∪ Expd2u,v(s, t),H, G ∪ {s
.
= t}〉

u ∈ B(s), v ∈ B(t), s ≈ t

Fig. 4. Inference rules of iRI

The correctness of the incremental rewriting induction is proved similarly to
the enhanced rewriting induction by putting →1 =→R, →2 =→H , →3 =→G,
and →4 =

∗↔R∪E ∩%.

Theorem 2 (correctness of incremental rewriting induction). Let R be a
quasi-reducible TRS, E, E sets of equations, % a reduction quasi-order satisfying
R ⊆ �. Suppose equations in E are inductive theorems of R. If there exist sets
H, G (of rewrite rules and of equations, respectively) such that 〈E, ∅, ∅〉 ∗

 iRI

〈∅, H, G〉, then equations in E are inductive theorems of R.

Example 8 (incremental rewriting induction). Let R, E and E be as below. We
may suppose that equations in E has been already proved (Examples 1, 6).

R =















plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0

times(s(x), y) → plus(times(x, y), y)















E =

{

plus(x, plus(y, z))
.
= plus(plus(x, y), z)

plus(x, y)
.
= plus(y, x)

}

E =
{

times(x, y)
.
= times(y, x)

}

Then the incremental rewriting induction by the recursive path order based on
precedence times � plus � s � 0 proceeds as follows:

〈{

times(x, y)
.
= times(y, x)

}

,
{}

,
{}〉

 e2
iRI

〈







0
.
= 0

plus(times(x1, 0), 0)
.
= 0

plus(times(x1, s(y1)), s(y1))
.
= plus(times(y1, s(x1)), s(x1))







{}

,
{

times(x, y)
.
= times(y, x)

}

〉

 d
iRI

s
iRI

s
iRI

d
iRI

〈

{

plus(times(x1, s(y1)), s(y1))
.
= plus(times(y1, s(x1)), s(x1))

}

{}

,
{

times(x, y)
.
= times(y, x)

}

〉

 s
iRI

s2
iRI

s
iRI

s
iRI

s2
iRI

s
iRI

〈

{

s(plus(y1, plus(times(x1, y1), x1)))
.
= s(plus(x1, plus(times(x1, y1), y1)))

}

{}

,
{

times(x, y)
.
= times(y, x)

}

〉

 d2
iRI

〈{}

,
{}

,
{

times(x, y)
.
= times(y, x)

}〉

Thus the commutativity of times has been proved.

6 Conclusion

We have presented an extension of the rewriting induction that can deal with
conjectures not orientable by the given reduction order. We gave inference rules
of the enhanced rewriting induction and proved its correctness. We have also
present incremental rewriting induction in which already-proved lemmas can be
applied more easily.

Our approach to deal with non-orientable equations is based on the rewriting
modulo equations originally suggested in [12]. Another approach is to use ordered
rewriting technique [2, 6]. The latter approach is embodied in the inductive theo-
rem prover SPIKE [3, 4]. Below we list some results of inductive theorem proving
of non-orientable conjectures (in purely equational setting) by SPIKE and our
inference systems. It appears that results of these two approaches are quite dif-
ferent even in simple examples. In particular, our system can not directly deal
with conjectures that are incomparable in the given reduction quasi-order, al-
though SPIKE can deal with such conjectures directly. On the other hand, our
system successfully handle commutativity equations that are hard for SPIKE.

(many-sorted) conjectures SPIKE Enhanced RI Incremental RI
max(x, y)

.
= max(y, x)

√ √ √
minus(minus(x, y), z)

.
= minus(minus(x, z), y)

√ √ √
len(app(xs, ys))

.
= len(app(ys, xs))

√ √ √
len(qrev(xs, ys))

.
= len(qrev(ys, xs)) × √ √

plus(x, plus(y, z))
.
= plus(y, plus(x, z))

√ × ×






plus(x, y)
.
= plus(y, x)

plus(x, plus(y, z))
.
= plus(plus(x, y), z)

plus(x, plus(y, z))
.
= plus(y, plus(x, z))







√ × √







plus(x, plus(y, z))
.
= plus(plus(x, y), z)

plus(x, y)
.
= plus(y, x)

times(x, y)
.
= times(y, x)







× × √







plus(x, plus(y, z))
.
= plus(plus(x, y), z)

plus(x, y)
.
= plus(y, x)

sum(app(xs, ys))
.
= sum(app(ys, xs))







× × √

To see the difference, we show how the process proving the commutativity of
times proceeds in SPIKE. First by expansion rule, it produces

0
.
= times(0, 0) (7)

plus(times(x1, 0), 0)
.
= times(0, s(x1)) (8)

0
.
= times(s(x1), 0) (9)

plus(times(x2, s(x1)), s(x1))
.
= times(s(x1), s(x2)) (10)

In the presence of commutativity and associativity equations for plus (as proved
lemmas), the successive simplification procedure works as follows:

(7)⇒ 0
.
= 0⇒ deleted

(8)⇒ plus(times(0, x1), 0)
.
= times(0, s(x1))⇒ 0

.
= 0⇒ deleted

(9)⇒ 0
.
= plus(times(x1, 0), 0)

(10)⇒ plus(times(s(x1), x2), s(x1))
.
= times(s(x1), s(x1))

⇒ plus(plus(times(x1, x2), x2), s(x1))
.
= plus(times(x1, s(x2)), s(x2))

⇒ plus(times(x1, x2), plus(x2, s(x1)))
.
= plus(times(x1, s(x2)), s(x2))

Thus, it results in a two elements set of remaining conjectures. On the other
hand, in our procedure, as shown in Example 8, one expansion and successive
simplifications successfully eliminate all equations.

Acknowledgments

Thanks are due to anonymous referees for helpful comments and suggestions.
This work was partially supported by a grant from Japan Society for the Pro-
motion of Science, No. 17700002.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In
Resolution of Equations in Algebraic Structure, volume 2, pages 1–30. Academic
Press, 1989.

3. A. Bouhoula. Automated theorem proving by test set induction. Journal of Sym-

bolic Computation, 23:47–77, 1997.
4. A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induc-

tion. Journal of Logic and Computation, 5(5):631–668, 1995.
5. R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.
6. N. Dershowitz and U. S. Reddy. Deductive and inductive synthesis of equational

programs. Journal of Symbolic Computation, 15:467–494, 1993.
7. G. Huet and J.-M. Hullot. Proof by induction in equational theories with con-

structors. Journal of Computer and System Sciences, 25(2):239–266, 1982.
8. J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in theories with-

out constructors. Information and Computation, 82:1–33, 1989.
9. D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using

test sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.
10. H. Koike and Y. Toyama. Inductionless induction and rewriting induction. Com-

puter Software, 17(6):1–12, 2000. In Japanese.
11. D. R. Musser. On proving inductive properties of abstract data types. In Proc. of

the 7th Annual ACM Symposium on Principles of Programming Languages, pages
154–162. ACM Press, 1980.

12. U. S. Reddy. Term rewriting induction. In Proc. of the 10th International Con-

ference on Automated Deduction, volume 449 of LNAI, pages 162–177. Springer-
Verlag, 1990.

13. K. Sakamoto, T. Aoto, and Y. Toyama. Fusion transformation based on rewriting
induction. In Proc. of the JSSST 21th Annual Conference, 2B-3, 2004. In Japanese.

14. Terese. Term Rewriting Systems. Cambridge University Press, 2003.
15. Y. Toyama. How to prove equivalence of term rewriting systems without induction.

Theoretical Computer Science, 90(2):369–390, 1991.

