
Nominal Confluence Tool?

Takahito Aoto1 and Kentaro Kikuchi2

1 Faculty of Engineering, Niigata University,
aoto@ie.niigata-u.ac.jp
2 RIEC, Tohoku University,

kentaro@nue.riec.tohoku.ac.jp

Abstract. Nominal rewriting is a framework of higher-order rewriting
introduced in (Fernández, Gabbay & Mackie, 2004; Fernández & Gabbay,
2007). Recently, (Suzuki et al., 2015) revisited confluence of nominal
rewriting in the light of feasibility. We report on an implementation of
a confluence tool for (non-closed) nominal rewriting, based on (Suzuki
et al., 2015) and succeeding studies.

Keywords: confluence, nominal rewriting, automation, variable bind-
ing, higher-order rewriting

1 Introduction

Rewriting captures various computational aspects in equational reasoning [4].
Higher-order rewriting deals with rewriting of expressions with higher-order
functions and variable binding. Various formalisms for higher-order rewriting
have been considered e.g. [12, 14]. Nominal rewriting [6, 7] is a formalism of
higher-order rewriting, based on the nominal approach for terms and unification
[9, 16, 21].

Confluence is a central property in rewriting [4]. Confluence tools for various
rewriting formalisms have been developed [2, 10, 17, 22], and a yearly competition
for confluence tools has emerged from 2012 [1]. Some basic confluence results for
nominal rewriting have been mentioned in [6]. Recently, these results have been
revisited and extended by the authors [11, 19, 20] in the light of feasibility and
more-in-depth analysis. In this paper, we report on a confluence tool for nominal
rewriting based on those confluence studies.

2 Preliminaries

In this section, we recall basic notions and fix notations on nominal terms and
rewriting. We refer to [6, 7, 19] for omitted definitions and intuitive explanations.

A nominal signature Σ is a set of function symbols ranged over by f, g,
We fix a countably infinite set X of term variables ranged over by X,Y, . . . , and
a countably infinite set A = {a, b, c, . . . } of atoms ranged over by a, b, c . . . (i.e.

? This work is partially supported by JSPS KAKENHI (Nos. 15K00003, 16K00091).

2 T. Aoto and K. Kikuchi

a, b, c, . . . stand for objects and a, b, c, . . . stand for meta-variables). A swap-
ping is a pair (a b) of atoms. Permutations π are bijections on A with finite
support(π) = {a ∈ A | a 6= π(a)}; permutations are represented by compositions
of swappings. P stands for the set of permutations. We put ds(π, π′) = {a ∈ A |
π·a 6= π′·a} for any π, π′ ∈ P. Terms are generated by the grammar

s, t ∈ T ::= a | π·X | [a]t | f t | 〈t1, . . . , tn〉

A term of form π·X is called a suspension. A suspension Id ·X is abbreviated
as X, where Id denotes the identity. We write A(t) and X (t) for the sets of
atoms and term variables occurring in a term t (or any expression t, in general)
where the former includes the atoms in abstractions [a] and in support(π) of
suspensions π·X. The subterm of t at a position p is written as t|p. The term
obtained from a term s by replacing the subterm at position p by a term t is
written as s[t]p. Action π·t and meta-action tπ are defined as follows:

π·a = π(a) aπ = π(a)
π·(π′·X) = (π ◦ π′)·X (π′·X)π = (π ◦ π′ ◦ π−1)·X
π·([a]t) = [π·a](π·t) ([a]t)π = [aπ]tπ

π·(f t) = f π·t (f t)π = f tπ

π·〈t1, . . . , tn〉 = 〈π·t1, . . . , π·tn〉 〈t1, . . . , tn〉π = 〈tπ1 , . . . , tπn〉

A substitution is a map σ : X → T with finite dom(σ) = {X ∈ X | σ(X) 6= X}.
The application of a substitution σ on a term t is written as tσ.

A finite set of pairs a#X of a ∈ A and X ∈ X is called a freshness context.
For a freshness context ∇, a ∈ A and s, t ∈ T , the relations ∇ ` a#t and
∇ ` s ≈α t are defined as follows:

∇ ` a#b
a 6= b

∇ ` a#t

∇ ` a#f t

∇ ` a#t1 · · · ∇ ` a#tn

∇ ` a#〈t1, . . . , tn〉

∇ ` a#[a]t

∇ ` a#t

∇ ` a#[b]t
a 6= b

π−1·a#X ∈ ∇
∇ ` a#π·X

∇ ` a ≈α a
∇ ` t1 ≈α s1 · · · ∇ ` tn ≈α sn
∇ ` 〈t1, . . . , tn〉 ≈α 〈s1, . . . , sn〉

∇ ` t ≈α s
∇ ` f t ≈α f s

∇ ` t ≈α (a b)·s ∇ ` a#s

∇ ` [a]t ≈α [b]s
a 6= b

∇ ` t ≈α s
∇ ` [a]t ≈α [a]s

∀a ∈ ds(π, π′). a#X ∈ ∇
∇ ` π·X ≈α π′·X

Here a#t is called a freshness constraint, and s ≈α t an α-equivalence constraint.
For (freshness or α-equivalence) constraints γ1, . . . , γn, we write ∆ ` γ1, . . . , γn
if ∆ ` γi for all 1 ≤ i ≤ n. We put (a#t)σ = a#tσ and (s ≈α t)σ = sσ ≈α tσ.

Nominal Confluence Tool 3

Nominal unification finds a pair 〈∆,σ〉 of a freshness context ∆ and a substitu-
tion σ such that ∆ ` γ1σ, . . . , γnσ from C = {γ1, . . . , γn}; a most general such
pair is an mgu of C [21].

A triple ∇ ` l→ r of a freshness context ∇ and l, r ∈ T such that l is not a
suspension and X (∇) ∪ X (r) ⊆ X (l) is called a nominal rewrite rule, or simply
rewrite rule. Rewrite rules are identified modulo renaming of term variables. A
nominal rewriting system (NRS for short) is a finite set of rewrite rules. Let
R = ∇ ` l → r be a rewrite rule. For a freshness context ∆ and s, t ∈ T , the
rewrite relation is defined by

∆ ` s→〈R,π,p,σ〉 t
def⇐⇒ ∆ ` ∇πσ, ∆ ` s|p ≈α lπσ, t = s[rπσ]p

where X (l) ∩ (X (∆) ∪ X (s)) = ∅. Here, ∇π = {π(a)#X | a#X ∈ ∇}. For an
NRS R, we write ∆ ` s →R t if there exist R ∈ R, π, p and σ such that ∆ `
s →〈R,π,p,σ〉 t. We define ∆ ` s1 ./1 s2 ./2 · · · (./n−1 sn) (./i ∈ {→R,≈α, . . .})
in the obvious way. ∆ ` s→∗R t stands for ∆ ` s→R · · · →R t, and ∆ ` s ↓≈α t
stands for ∆ ` s →∗R ◦ ≈α ◦ ←∗R t. An NRS R is Church-Rosser modulo ≈α if
∆ ` s (←R ∪→R ∪ ≈α)

∗
t implies ∆ ` s ↓≈α t. An NRS R is terminating if

there is no infinite rewrite sequence ∆ ` s1 →R s2 →R · · · .

3 Computing Rewrite Steps and Basic Critical Pairs

A most fundamental ingredient in automation of confluence checking is the com-
putation of rewrite steps, that is, to compute a term t such that ∆ ` s →R t
or even (representatives of) all t such that ∆ ` s →R t, from a given NRS R,
a freshness context ∆ and a term s. The main challenge here is to find suitable
π and σ such that ∆ ` ∇πσ and ∆ ` s|p ≈α lπσ, when fixing ∇ ` l → r ∈ R
and a position p in s. Another key ingredient is the computation of basic critical
pairs:

Definition 3.1 (Basic critical pair [20]). Let Ri = ∇i ` li → ri (i = 1, 2) be
rewrite rules. We assume w.l.o.g. X (l1) ∩ X (l2) = ∅. Let ∇1 ∪ ∇π2 ∪ {l1 ≈ lπ2 |p}
be unifiable for some permutation π and a non-variable position p and let 〈Γ, σ〉
be an mgu. Then, Γ ` 〈lπ2σ[r1σ]p, r

π
2 σ〉 is called a basic critical pair (BCP for

short) of R1 and R2. The set of BCP of rules in R is denoted by BCP(R).

Again, the main challenge for the computation of (representatives of) all BCPs
is to find suitable π and σ when fixing R1, R2 ∈ R and a position p.

Since π is not fixed here, these problems are not computed by nominal uni-
fication but by equivariant nominal unification [5]. In what follows, we present
our formalization of equivariant nominal unification and then explain how BCPs
are computed. (The computation of rewrite steps is done by replacing equiv-
ariant unification by equivariant matching, obtained by adding constraints on
instantiation.)

4 T. Aoto and K. Kikuchi

3.1 Equivariant Unification

We extend our language by countably infinite sets XA and XP of atom variables
ranged over by A,B, . . . and permutation variables ranged over by P,Q Ele-
ments of A ∪ XA are ranged over by α, β, . . . and called atom expressions. Per-
mutation/atomic/term expressions (EP /EA/ET) are generated by the grammar:

Π,Ψ ∈ EP := P | Id | (v w) | Π ◦ Ψ | Π−1
v, w ∈ EA := Π·α
S, T ∈ ET := v | Π·X | [v]T | f T | 〈T1, . . . , Tn〉

Note here that “Id” etc. are not meta-operations but new constructs. For ex-
ample, we have (((P ◦ Q)−1 · A) B) ∈ EP , (((P ◦ Q)−1 · A) B) · c ∈ EA and
[(((P ◦Q)−1 ·A) B) · c](f 〈P−1 ·X,Q−1 · c〉) ∈ ET .

An instantiation is a pair θ = 〈θA, θP 〉 of mappings θA : XA → A and
θP : XP → P. For each Π ∈ EP , v ∈ EA, S ∈ ET , their interpretations [[Π]]θ ∈ P,
[[v]]θ ∈ A, [[S]]θ ∈ T by an instantiation θ are defined by the following:

[[P]]θ = θP (P) [[Π·α]]θ = [[Π]]θ·[[α]]θ [[a]]θ = a
[[Id]]θ = Id [[Π·X]]θ = [[Π]]θ·X [[A]]θ = θA(A)

[[(v w)]]θ = ([[v]]θ [[w]]θ) [[[v]T]]θ = [[[v]]θ][[T]]θ
[[Π ◦ Ψ]]θ = [[Π]]θ ◦ [[Ψ]]θ [[f T]]θ = f [[T]]θ

[[Π−1]]θ = [[Π]]−1θ [[〈T1, . . . , Tn〉]]θ = 〈[[T1]]θ, . . . , [[Tn]]θ〉

Note here that “Id” etc. in the rhs’s of the definitions are not constructs but
meta-operations. For example, if we take θP (P) = (a b), θP (Q) = (b c) and
θA(A) = a, θA(B) = b then we have [[(((P ◦ Q)−1 · A) B)]]θ = (c b) ∈ P,
[[(((P ◦Q)−1 ·A) B) · c]]θ = b ∈ A and [[[(((P ◦Q)−1 ·A) B) · c](f 〈P−1 ·X,Q−1 ·
c〉)]]θ = [b](f 〈(a b) · X, b〉) ∈ T . For a permutation expression Π ∈ EP and a
term expression T ∈ ET , we define action Π·T ∈ ET and meta-action TΠ ∈ ET
as follows:

Π·(Π ′·α) = (Π ◦Π ′)·α (Π ′·α)Π = (Π ◦Π ′)·α
Π·(Π ′·X) = (Π ◦Π ′)·X (Π ′·X)Π = (Π ◦Π ′ ◦Π−1)·X
Π·([v]T) = [Π·v](Π·T) ([v]T)Π = [vΠ]TΠ

Π·(f T) = f Π·T (f T)Π = f TΠ

Π·〈T1, . . . , Tn〉 = 〈Π·T1, . . . ,Π·Tn〉 〈T1, . . . , Tn〉Π = 〈TΠ1 , . . . , TΠn 〉

A freshness constraint expression is a pair v#T of v ∈ EA and T ∈ ET and an
α-equivalence constraint expression is a pair S ≈ T of S, T ∈ ET . An equivariant
unification problem (EUP) is a finite set of (freshness or α-equivalence) con-
straint expressions. We put [[v#T]]θ = [[v]]θ#[[T]]θ and [[S ≈ T]]θ = [[S]]θ ≈α [[T]]θ.
A model of an EUP C = {γ1, . . . , γn} is a triple 〈θ, σ,∆〉 of an instantiation θ, a
substitution σ and a freshness context ∆ such that ∆ ` [[γi]]θσ for all 1 ≤ i ≤ n.
We write 〈θ, σ,∆〉 |= C if 〈θ, σ,∆〉 is a model of C.

An answer constraint is a finite set of expressions of the following forms:

A 7→ v | P : α 7→ β | α 6≈ β | X 7→ T | α#X | #(X,Π,Π ′)

Nominal Confluence Tool 5

A triple 〈θ, σ,∆〉 is a model of an answer constraint S, written as 〈θ, σ,∆〉 |= S,
if θA(A) = [[v]]θ for any A 7→ v ∈ S, θP (P)([[α]]θ) = [[β]]θ for any P : α 7→
β ∈ S, [[α]]θ 6= [[β]]θ for any α 6≈ β ∈ S, σ(X) = [[T]]θ for all X 7→ T ∈ S,
∆ ` [[α]]θ#Xσ for all α#X ∈ S, and ∆ ` a#Xσ for any a ∈ ds([[Π]]θ, [[Π

′]]θ)
and #(X,Π,Π ′) ∈ S. For a given EUP C, equivariant unification [5] computes
a finite set M = Sol(C) of answer constraints such that, for any triple 〈θ, σ,∆〉,
〈θ, σ,∆〉 |= C iff ∃S ∈ M. 〈θ, σ,∆〉 |= S.

3.2 Computing Basic Critical Pairs

We now proceed to explain how the representative set of BCPs are computed
using equivariant unification, from two given rewrite rules Ri = ∇i ` li → ri
(i = 1, 2) and a position p. The procedure consists of the following two steps.

1. Equivariant Unification. We solve the following EUP:

C = ∇1 ∪∇P2 ∪ {l1 ≈ lP2 |p} ∪ {P · ai ≈ Ai | ai ∈ A(l2[]p) ∪ A(r1) ∪ A(r2)}

where P ∈ XP , and each Ai is a fresh atom variable. The last component of
the union is added to specify P (a) for all a required to construct lπ2σ[r1σ]p
and rπ2 σ. If Sol(C) = ∅ then we return the empty set of BCPs.

2. Instantiation. For each S ∈ Sol(C), we compute all (representative of) BCPs
obtained by models of answer constraints S ∈ Sol(C), more formally, a finite

set TS representing {Γ ` 〈lθP (P)
2 σ[r1σ]p, r

θP (P)
2 σ〉 | 〈θ, σ, Γ 〉 |= S}. We obtain

a set BCPS of BCPs from S, l2, r1 and r2 by successively instantiating each
atom variable and atomic expression P ·α in S by all atoms already used
and one new fresh atom (as the representative of all other non-used atoms),
where any instantiation must satisfy Γ ` γ for all freshness constraints γ
obtained from α#X ∈ S and #(X,Π, Ψ) ∈ S. Note also that due to the
form of the input, all occurrences of P in #(X,Π, Ψ) ∈ S have the form
P ·α. Therefore, any #(X,Π, Ψ) can be replaced with {a#X | a ∈ ds(Π,Ψ)}
when instantiations are completed. (This is not always possible for general
equivariant unification problems e.g. consider #(X, (a b), P).) Finally, we
put BCPC =

⋃
S∈Sol(C) BCPS .

Example 3.2. Let forall ∈ Σ and consider the following NRS:

Rcom∀ =
{
` forall [a]forall [b]X → forall [b]forall [a]X}

Consider the overlap at position 11. In the first step, we solve an EUP:

C = {forall [a]forall [b]X ≈ (forall [P ·b]Y)} ∪ {P · a ≈ A}

Then we obtain Sol(C) ={Y 7→ (forall [b]X), P : a 7→ A,P : b 7→ a},
{Y 7→ (forall [a][(a b)]X), P : a 7→ A,P : b 7→ b},
{Y 7→ (forall [(a C)·b][(a C)]X), C#X,C 6≈ a, C 6≈ b, P : a 7→ A,P : b 7→ C}

6 T. Aoto and K. Kikuchi

By instantiating A (by a, b and c) and C (by a, b, c and d) successively, we obtain
the following seven BCPs from this overlap: BCPC =

` 〈forall[b]forall[b]forall[a]X, forall[a]forall[b]forall[b]X〉
` 〈forall[c]forall[b]forall[a]X, forall[a]forall[c]forall[b]X〉
` 〈forall[a]forall[b]forall[a]X, forall[b]forall[a]forall[a][(a b)]X〉
` 〈forall[c]forall[b]forall[a]X, forall[b]forall[c]forall[a][(a b)]X〉
c#X ` 〈forall[b]forall[b]forall[a]X, forall[c]forall[b]forall[b](a c)·X〉
c#X ` 〈forall[a]forall[b]forall[a]X, forall[c]forall[a]forall[b](a c)·X〉
d#X ` 〈forall[c]forall[b]forall[a]X, forall[d]forall[c]forall[b](a d)·X〉

4 Proving Confluence Automatically

4.1 Confluence Criteria

We prove (non-)confluence based on the following confluence criteria.

Proposition 4.1 ([19]). Let R be an orthogonal NRS that is abstract skeleton
preserving (ASP). Then, R is Church-Rosser modulo ≈α.

Proposition 4.2 ([20]). Let R be a linear uniform NRS. Then R is Church-
Rosser modulo ≈α if Γ ` u →= ◦ ≈α ◦ ←∗ v and Γ ` u →∗ ◦ ≈α ◦ ←= v for
any Γ ` 〈u, v〉 ∈ BCP(R).

Proposition 4.3 ([20]). Let R be a terminating uniform NRS. Then R is
Church-Rosser modulo ≈α if and only if Γ ` u ↓≈α v for any Γ ` 〈u, v〉 ∈
BCP(R).

Proposition 4.4 ([11]). Let R be a left-linear uniform NRS. Then R is Church-
Rosser modulo ≈α if Γ ` u −→q ◦ ≈α v for any Γ ` 〈u, v〉 ∈ BCPin(R) and
Γ ` u−→q ◦ ≈α ◦ ←∗ v for any Γ ` 〈u, v〉 ∈ BCPout(R).

Here, an NRS is orthogonal if it is left-linear and has no proper BCPs [19];
Γ ` s →= t stands for Γ ` s → t or s = t; Γ ` s −→q t stands for the parallel
rewrite relation [19]; and BCPin(R) and BCPout(R) denote the sets of inner and
outer BCPs [11], respectively.

The ASP condition and uniformness of NRSs are decidable [6, 19]. To check
the joinability conditions in Propositions 4.2 and 4.4, sets {w | Γ ` u →= w}
and {w | Γ ` u−→q w} are computed using the procedure for computing rewrite
steps. For checking confluence criteria of Proposition 4.3, termination checking
is required, which we explain in the next subsection.

4.2 Proving Termination

In this subsection, we present a simple technique to show termination of NRSs.

Nominal Confluence Tool 7

Definition 4.5. Let Σ be a nominal signature, and F a arity-fixed first-order
signature given by F = {f | f ∈ Σ}∪{�, λ}∪{pairn | n ≥ 0}, where � is of arity
0, λ and all f ∈ Σ are of arity 1, and pairn is of arity n for each n. We define a
translation Φ from nominal terms over Σ to first-order terms over F (with the
set X of variables) as follows:

Φ(a) = � Φ(π·X) = X Φ([a]t) = λ(Φ(t))
Φ(f t) = f(Φ(t)) Φ(〈t1, . . . , tn〉) = pairn(Φ(t1), . . . , Φ(tn))

For an NRS R, we define a first-order term rewriting system Φ(R) by: Φ(R) =
{Φ(l)→ Φ(r) | ∇ ` l→ r ∈ R}.

Theorem 4.6. If Φ(R) is terminating then R is terminating modulo ≈α.

Proof. The claim follows from the fact that for any ∆, s, t, (i) ∆ ` s ≈α t implies
Φ(s) = Φ(t) and (ii) ∆ ` s→R t implies Φ(s)→Φ(R) Φ(t). ut

Remark 4.7. In [8], nominal terms are given by the following grammar:

t, s ::= a | π·X | [a]t | f(t1, . . . , tn)

It is easy to modify the translation Φ to adapt to this definition. In [8, Definition
6], recursive path order on nominal terms for proving termination of “closed
rewriting” has been given. It is easy to see that the order can be obtained by
combining the translation Φ and recursive path order on first-order terms.

5 Implementation and Experiments

Our tool nrbox (nominal rewriting toolbox) is implemented in Standard ML of
New Jersey1. It reads an NRS R from the input and tries to prove whether it is
Church-Rosser modulo ≈α or not—it prints out “YES” (“NO”) if it successfully
proves that R is (resp. is not) Church-Rosser modulo ≈α and “MAYBE” if it fails
to prove or disprove that R is Church-Rosser modulo ≈α.

The source code of the tool is obtained from http://www.nue.ie.niigata-u.

ac.jp/tools/nrbox/. It consists of about 4500 lines of code, and roughly one
third of the code is devoted to equivariant unification. The format of input NRSs
follows a specification bundled in the distribution. To prove the termination of
NRSs by the method described in Section 4.2, the tool requires an external
termination prover for first-order term rewriting systems.

We have tested our confluence prover with 30 NRSs, collected from the liter-
ature [3, 6, 8] and constructed during our studies [11, 18–20]. All tests have been
performed in a PC with one 2.50GHz CPU and 4G memory. We have used TTT
[13] with 20 sec. timeout as the external termination prover for first-order term
rewriting systems.

1 http://www.smlnj.org/

8 T. Aoto and K. Kikuchi

Table 1. Summary of experiments

NRS Orth. Strong K.-B. Parallel

1 α-reduction rule ([6] Intro.) MAYBE YES MAYBE YES

2 Eta: η-reduction rule ([6] Intro.) YES YES YES YES

3 η-expansion rule ([6] Intro.) MAYBE MAYBE MAYBE MAYBE

4 R∗σ: subst. for λ with σε (Ex. 43 [6]) MAYBE MAYBE YES YES

5 β-reduction {Beta} ∪ R∗σ (Ex. 43 [6]) MAYBE MAYBE MAYBE MAYBE

6 a fragment of ML (Ex. 43 [6]) MAYBE MAYBE MAYBE MAYBE

7 PNF of FOF (Ex. 44 [6]) MAYBE MAYBE NO MAYBE

8 PNF of FOF with addition (Ex. 44 [6]) MAYBE MAYBE NO MAYBE

9 non-joinable trivial CP (Lem. 56 [6]) MAYBE MAYBE MAYBE MAYBE

10 {a#X ` X → [a]X} (Lem. 56 [6]) MAYBE MAYBE MAYBE MAYBE

11 {Eta,⊥} (Ex. 5 [8]) MAYBE MAYBE NO MAYBE

12 {Eta,⊥} with CP (Ex. 5 [8]) MAYBE YES YES YES

13 summation (Ex. 6 [8]) MAYBE MAYBE NO MAYBE

14 summation with CP (Ex. 6 [8]) MAYBE MAYBE YES MAYBE

15 {` f(X) → [a]X} (Ex. 1.2 [18]) MAYBE MAYBE NO MAYBE

16 {a#X ` f(X) → [a]X} (Ex. 4.7 [18]) YES YES YES YES

17 Rσ: subst. for λ with σvarε (Ex. 8 [19]) YES MAYBE YES YES

18 β-reduction {Beta} ∪ Rσ MAYBE MAYBE MAYBE MAYBE

19 βη-reduction {Beta} ∪ {Eta} ∪ Rσ MAYBE MAYBE MAYBE MAYBE

20 Ruc-η (Ex. 17 [19]) MAYBE MAYBE MAYBE MAYBE

21 Ruc-η-exp (Ex. 19 [19]) MAYBE MAYBE NO MAYBE

22 µ-substitution for λµ-term ([15]) YES MAYBE YES YES

23 {` f(X) → f([a]X)} (Ex. 4.3 [3]) MAYBE MAYBE MAYBE MAYBE

24 NNF of {¬, ∀,∧}-form. with swap (Ex. 5.5 [3]) MAYBE YES YES YES

25 Com∀: com. rule for ∀ (Ex. 5 [20]) MAYBE YES MAYBE MAYBE

26 PNF of {∀,∧}-form. (Ex. 7 [20]) MAYBE MAYBE NO MAYBE

27 PNF of {∀,∧}-form. + Com∀ (Ex. 12 [20]) MAYBE MAYBE MAYBE MAYBE

28 NNF of {¬, ∀, ∃}-form. (Ex. 29 [20]) MAYBE MAYBE YES MAYBE

29 NNF of FOF MAYBE MAYBE YES MAYBE

30 NNF of FOF without DNE YES YES YES YES

(]YES,]NO) (5,0) (7,0) (11,7) (9,0)∑
time (msec.) 611 1367 4377 2217

Summary of experiments is shown in Table 1. The column below “NRS”
shows descriptions of the input NRSs. The columns below “Orth.”, “Strong”,
“K.-B.” and “Parallel” show the results of applying the confluence proving meth-
ods from Propositions 4.1, 4.2 (with an approximation of →∗ by →=), 4.3 and
4.4 (with an approximation of →∗ by −→q), respectively—YES denotes for the
success for proving, NO denotes for the success of disproving, and MAYBE denotes
failure. For each method, the last two lines of the table show the number of
successes for proving/disproving confluence and the total time for checking all
of the examples.

Using the combination of all the methods, our prover succeeded in proving
confluence of 13 examples and non-confluence of 7 examples. All details of the

Nominal Confluence Tool 9

experiments are available on the webpage http://www.nue.ie.niigata-u.ac.

jp/tools/nrbox/experiments/ijcar16/.

References

1. Confluence competition, http://coco.nue.riec.tohoku.ac.jp/
2. Aoto, T., Yoshida, Y., Toyama, Y.: Proving confluence of term rewriting systems

automatically. In: Proc. 20th RTA. LNCS, vol. 5595, pp. 93–102. Springer-Verlag
(2009)

3. Ayala-Rincón, M., Fernández, M., Gabbay, M.J., Rocha-Oliveira, A.C.: Checking
overlaps of nominal rewrite rules. In: Preproc. 10th LSFA. pp. 199–214 (2015)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

5. Cheney, J.: Equivariant unification. J. of Automated Reasoning 45, 267–300 (2010)
6. Fernández, M., Gabbay, M.J.: Nominal rewriting. Inform. and Comput. 205, 917–

965 (2007)
7. Fernández, M., Gabbay, M.J., Mackie, I.: Nominal rewriting systems. In: Proc. 6th

PPDP. pp. 108–119. ACM Press (2004)
8. Fernández, M., Rubio, A.: Nominal completion for rewriting systems with binders.

In: Proc. ICALP’12. LNCS, vol. 7392, pp. 201–213. Springer-Verlag (2012)
9. Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable bind-

ing. Formal Aspects of Comput. 13, 341–363 (2002)
10. Hirokawa, N., Klein, D.: Saigawa: A confluence tool. In: Proc. of 1st IWC. p. 49

(2012)
11. Kikuchi, K., Aoto, T., Toyama, Y.: Parallel closure theorem for left-linear

nominal rewriting systems, http://www.nue.riec.tohoku.ac.jp/user/kentaro/
cr-nominal/pct.pdf

12. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:
introduction and survey. Theoret. Comput. Sci. 121, 279–308 (1993)

13. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Proc. 20th RTA. LNCS, vol. 5595, pp. 295–304. Springer-Verlag (2009)

14. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. Theoret.
Comput. Sci. 192, 3–29 (1998)

15. Parigot, M.: λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In: Proc. 3rd LPAR. LNAI, vol. 624, pp. 190–201. Springer-Verlag (1992)

16. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inform. and
Comput. 186, 165–193 (2003)

17. Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In:
Proc. Joint 25th RTA and 12th TLCA. LNCS, vol. 8560, pp. 456–465. Springer-
Verlag (2014)

18. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: On confluence of nominal rewriting
systems. In: Proc. 16th PPL (2014), in Japanese.

19. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Confluence of orthogonal nominal
rewriting systems revisited. In: Proc. 26th RTA. LIPIcs, vol. 36, pp. 301–317 (2015)

20. Suzuki, T., Kikuchi, K., Aoto, T., Toyama, Y.: Critical pair analysis in nominal
rewriting. In: Proc. 7th SCSS. EPiC, vol. 39, pp. 156–168. EasyChair (2016)

21. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theoret. Comput. Sci.
323, 473–497 (2004)

22. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A confluence tool. In: Proc. 23rd
CADE. LNAI, vol. 6803, pp. 499–505. Springer-Verlag (2011)

