
Ground Confluence Prover Based on Rewriting
Induction
Takahito Aoto1 and Yoshihito Toyama2

1 Faculty of Engineering, Niigata University, Niigata, Japan
aoto@ie.niigata-u.ac.jp

2 RIEC, Tohoku University, Sendai, Japan
toyama@riec.tohoku.ac.jp

Abstract
Ground confluence of term rewriting systems guarantees that all ground terms are confluent.
Recently, interests in proving confluence of term rewriting systems automatically has grown, and
confluence provers have been developed. But they mainly focus on confluence and not ground
confluence. In fact, little interest has been paid to developing tools for proving ground confluence
automatically. We report an implementation of a ground confluence prover based on rewriting
induction, which is a method originally developed for proving inductive theorems.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, I.2.3 Deduc-
tion and Theorem Proving

Keywords and phrases Ground Confluence, Rewriting Induction, Non-Orientable Equations,
Term Rewriting Systems

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.33

1 Introduction

Ground confluence of term rewriting systems (TRSs for short) guarantees that all ground terms
are confluent. Not (general) confluence but ground confluence often matters in applications
where not equational validity but inductive validity is of concern, including refutational
completeness of inductive theorem proving and correctness of program transformations (e.g.
[10, 11, 21]).

Classical works on ground confluence include [7, 16]. These works stem from inductionless
induction which has been studied in the context of proving inductive validity by variations
of Knuth-Bendix completion. Further studies on ground confluence orient for dealing
with expressive rewrite rules over complex data structures, such as order-sorted signature,
conditional rewrite rules and regular tree language constraints [7, 8, 15]. In this context,
Bouhoula [8] reported on a tool for proving ground confluence. However, not only his
procedure assumes reductivity of the system (a stronger notion of termination for conditional
TRSs), but it also depends on a procedure for proving joinable inductive theorems which
have to be dealt with a specialized proof procedure [9].

Confluence implies ground confluence but not vice versa as witnessed by:

I Example 1. Let F = {plus : Nat× Nat→ Nat, s : Nat→ Nat, 0 : Nat} and

R =
{

plus(0, 0) → 0 (a) plus(s(x), y) → s(plus(x, y)) (b)
plus(x, s(y)) → s(plus(y, x)) (c)

}
R is not confluent, as s(s(plus(y, x)))← s(plus(x, s(y)))← plus(s(x), s(y)))→ s(plus(y, s(x))
→ s(s(plus(x, y))). However, R is ground confluent.

© Takahito Aoto and Yoshihito Toyama;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 33; pp. 33:1–33:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Ground Confluence Prover Based on Rewriting Induction

Recently, several confluence provers have been developed (e.g. [6, 23, 17, 27]) and results in
automatable techniques for confluence proving. In contrast, it seems that little interest has
been paid to the development of tools for proving ground confluence automatically.

In this paper, we report an implementation of a ground confluence prover. Key features
of our prover are as follows:

It is based on a simple framework: our framework is many-sorted (first-order) TRSs;
considering not uni-sorted but many-sorted signature is a minimal requirement for natural
setting of the problem as it involves inductive arguments.
It requires a minimal input: the input of our tool is only a description of a many-sorted
TRS. In particular, we do not assume the ordering for making systems reductive and a
partition of function symbols into constructors and defined symbols—this is in contrast
to the setting often found in the literature of ground confluence [7, 8, 15].
It employs a simple method: our tool is based on rewriting induction, which is nowadays a
well-understood method for inductive theorem proving (e.g. [1]). We anticipate it should
be easy to develop similar (or even more sophisticated) tools based on our method.

Furthermore, we have prepared a collection of examples which can be used to estimate the
status of the power of ground confluence proving tools.

2 Preliminaries

We assume basic familiarity with (many-sorted) term rewriting (e.g. [24]).
We use] for the disjoint union and \ for the subtraction. The transitive reflexive

(reflexive, symmetric, reflexive symmetric, equivalence) closure of a relation → is denoted
by ∗→ (resp. =→, ↔, =↔, ∗↔). For any quasi-order %, we put � = % \- and ≈ = % ∩-. A
quasi-order % is well-founded if so is its strict part �. We abuse a set notation {a1, . . . , an}
with multisets. The multiset extension of a partial order � is denoted by �m.

Let S be a set of sorts. Each many-sorted function f is equipped with its sort declaration
f : α1 × · · · × αn → α0, where α0, . . . , αn ∈ S (n ≥ 0); the arity n is denoted by ar(f). The
set of terms over the set of many-sorted function symbols F and the set of variables V is
denoted by T(F ,V). The set of function symbols (variables) contained in a term t is denoted
by F(t) (resp. V(t)). The set of ground terms over G ⊆ F is denoted by T(G). The set of
positions of a term t is denoted by Pos(t). The empty position is denoted by ε. The symbol
in t at position p is denoted by t(p).

A context is a term containing a special constant �, called a hole. Let C be a context
containing precisely one hole. Then the term obtained from C by replacing the hole with t
is denoted by C[t]. A substitution is a mapping from V to T(F ,V). A ground substitution
is a mapping from V to T(F). For substitutions σ, usually it is required that the domain
{x ∈ V | σ(x) 6= x} of σ is finite, but we omit that condition to ease the notation so that
tσg is a ground term for any term t and ground substitution σg. A most general unifier of
terms s and t is denoted by mgu(s, t). A rewrite relation (quasi-order) is a relation (resp.
quasi-order) on terms closed under contexts and substitutions. A rewrite relation (quasi-order)
is a reduction relation (resp. quasi-order) if it is well-founded.

(Indirected) equations l .= r and r .= l are identified. A directed equation is denoted by
l→ r. For a set E of equations (directed equations) the smallest rewrite relation containing E
is denoted by↔E (resp.→E). For a set of directed equations E, let LHS(E) = {l | l→ r ∈ E}
and LHS(f,E) = {l | l → r ∈ E, l(ε) = f} for each f ∈ F . A directed equation l → r is a
rewrite rule if l /∈ V and V(l) ⊇ V(r) hold. A (many-sorted) term rewriting system (TRS for
short) is a finite set of rewrite rules. The set of R-normal forms is denoted by NF(R). The
set of critical pairs of a TRS R is denoted by CP(R).

T. Aoto and Y. Toyama 33:3

A TRS R is terminating if →R is well-founded. Terms s and t are joinable w.r.t. the
rewrite relation →R (denoted by s ↓R t) if s ∗→R u and t ∗→R u for some u. A TRS R is
(ground) confluent if s ↓R t holds for any (ground) terms s, t such that u ∗→R s and u ∗→R t

for some (resp. ground) term u. Terms s and t are ground convertible if sσg
∗↔R tσg holds

for any ground substitution σg. An equation s .= t is an inductive theorem of a TRS R, or
inductively valid in R, if s and t are ground convertible. We write R |=ind E for a set E of
equations if every s .= t ∈ E is an inductive theorem. Let % be a rewrite quasi-order. We
write s ∗↔%R t if there exists s = u0 ↔ u1 ↔R · · · ↔R un = t such that s % ui or t % ui for
every ui (1 ≤ i ≤ n). Terms s and t are bounded ground convertible w.r.t. % if sσg

∗↔%R tσg

holds for any ground substitution σg. A set E of equations is bounded ground convertible if
s and t are bounded ground convertible for any s .= t ∈ E.

The next lemma is a direct consequence of a generalized Newman’s Lemma [26]; see
Exercise 1.3.12 in [24].

I Lemma 2. Let % be a reduction quasi-order and R be a TRS such that R ⊆ �. If CP(R)
is bounded ground convertible w.r.t. %, then R is ground confluent.

We consider a partition of function symbols into the set D of defined symbols, and the set
C of constructors i.e. F = D] C. Terms in T(C, V) are constructor terms. Then a mapping
from V to T(C) is called a ground constructor substitution. A term of the form f(c1, . . . , cn)
for some f ∈ D and c1, . . . , cn ∈ T(C,V) is said to be basic. The set of basic subterms of s is
written as B(s). A TRS R is said to be quasi-reducible if no ground basic terms are normal.
Clearly, if R is a quasi-reducible terminating TRS then for any ground term s there exists t
such that s ∗→ t ∈ T(C).

3 Rewriting Induction for Ground Confluence

We now provide a background theory of our tool. In this section, we put D = {l(ε) | l →
r ∈ R} and C = F \ D. The fundamental ingredient of our ground confluence prover is the
following inference system of rewriting induction.

I Definition 3 (rewriting induction for ground confluence). The input of a rewriting induction
procedure is a TRS R, a set E of equations and a reduction quasi-order % such that R ⊆ �.
In Figure 1, we list the inference rules of the rewriting induction that act on pairs of a set of
equations and a set of directed equations. We write 〈E,H〉; 〈E′, H ′〉 when an inference
rule is applied (from upper to lower). The procedure (non-deterministically) generates a
derivation starting from 〈E, ∅〉. If the derivation ends with some 〈∅, H〉 (i.e. 〈E, ∅〉 ∗; 〈∅, H〉
for some H), then the procedure succeeds. The procedure fails if there are no inference rules
to apply. The derivation may also diverge.

In the figure, we use ◦ for the composition of relations and Expd is defined as:

Expdu(s, t) = {C[r]σ → tσ | s = C[u], σ = mgu(u, l), l→ r ∈ R}.

For a set H of directed equations and a reduction quasi-order %, we let

inv(H) = {r → l | l→ r ∈ H} and H� = {lσ → rσ | l→ r ∈ H, lσ � rσ}

where � ∈ {�,%}. Note that, for each � ∈ {�,%}, s→H� t iff s→H t and s � t.
I Remark. In contrast to usual rewriting induction system for proving inductive theorems
(see e.g. [1]), s � t is not assumed in Expand rule. The point is essential to deal with

FSCD 2016

33:4 Ground Confluence Prover Based on Rewriting Induction

Expand
〈E] {s .= t}, H〉

〈E ∪ {s′i
.= ti}i, H ∪ {s→ t}〉

u ∈ B(s), {si → ti}i = Expdu(s, t),
si
∗→H∪inv(H)% s′i

Simplify
〈E] {s .= t}, H〉
〈E ∪ {s′ .= t}, H〉

s→R∪H� ◦
∗→H∪inv(H)% s′

Delete
〈E] {s .= t}, H〉

〈E, H〉 s
=↔H t

Figure 1 Inference rules of rewriting induction.

non-orientable equations. In the system of [2], s→H∪inv(H)� s
′ is allowed in Simplify rule,

but here only s →H� s′ is allowed. Compared to the system in [13], elements of H are
directed equations to keep record of information on which side is expanded in Expand rule.
These modifications are required to guarantee the bounded ground convertibility.

I Example 4. Let us consider R of Example 1. Then, we have the following rewriting
induction derivation of from 〈E0, ∅〉 where E0 = CP(R).

〈{s(plus(x, s(y))) .= s(plus(y, s(x))}, ∅〉
∗
;Simplify 〈{s(s(plus(y, x))) .= s(s(plus(x, y)))}, ∅〉
;Expand 〈{s(s(0)) .= s(s(0)), s(s(s(plus(y′, x)))) .= s(s(plus(x, s(y′)))),

s(s(s(plus(x′, y)))) .= s(s(plus(s(x′), y)))},
{s(s(plus(y, x)))→ s(s(plus(x, y)))}〉

∗
;Simplify 〈{s(s(0)) .= s(s(0)), s(s(s(plus(y′, x)))) .= s(s(s(plus(y′, x)))),

s(s(s(plus(x′, y)))) .= s(s(s(plus(x′, y))))},
{s(s(plus(y, x)))→ s(s(plus(x, y)))}〉

∗
;Delete 〈∅, {s(s(plus(y, x)))→ s(s(plus(x, y)))}〉

Then, the rewriting induction procedure returns success.

Henceforth, we assume a reduction quasi-order % such that R ⊆ �—using standard
techniques in automated termination proof of TRSs, such a reduction quasi-order can be
searched efficiently using SAT-solvers (e.g. [12]).

A rewriting induction derivation 〈E0, H0〉 ; 〈E1, H1〉 ; · · · is said to be fair if⋃
j≥0

⋂
i≥j Ei = ∅. In the following lemmas, let us fix a fair derivation 〈E0, H0〉; 〈E1, H1〉;

· · · with H0 = ∅. Let E∞ =
⋃

i Ei. As H0 = ∅, it easily follows Hi ⊆ E∞ from the inference
rules of rewriting induction. The next relations are used to characterize an ordering constraint
induced by fair derivations.

I Definition 5. Let % be a well-founded quasi-order,→
1
,→

2
binary relations, and↔

1,2
=↔

1
∪↔

2
.

x
∗↔�2 y iff there exists x = x0 ↔2 x1 ↔2 · · · ↔2 xn = y such that {x, y} �m {xi, xi+1} for

every xi ↔2 xi+1.

x
∗↔%1,�2 y iff there exists x = x0 ↔1,2

x1 ↔1,2
· · · ↔

1,2
xn = y such that x % xi or y % xi for

every xi and {x, y} �m {xi, xi+1} for every xi ↔2 xi+1.

Note that {x, y} �m {xi, xi+1} implies x % xi or y % xi (and x % xi+1 or y % xi+1).

T. Aoto and Y. Toyama 33:5

Before showing the characterization of fair rewriting induction derivations, let us show a
consequence of the ordering constraint.

I Lemma 6 (conversion lemma). Suppose x ↔
2
y implies x ∗↔%1,�2 y for any x, y. Then,

x↔
2
y implies x ∗↔%1 y for any x, y.

Proof. By induction on the multiset {x, y} w.r.t. �m. Suppose x ↔
2
y. Then by our

assumption, x = x0 ↔1,2
x1 ↔1,2

· · · ↔
1,2

xn = y for some x0, . . . , xn (n ≤ 0). If xi ↔1 xi+1 for
all 0 ≤ i ≤ n − 1, then the claim follows. Suppose xi ↔2 xi+1 for some i. Then, by our

assumption, {x, y} �m {xi, xi+1} holds. Thus, by induction hypothesis, xi
∗↔%1 xi+1 holds.

Let xi = z0 ↔1 z1 ↔1 · · · ↔1 zp = xi+1. Then, every zj satisfies xi % zj or xi+1 % zj . Hence,
we have x % zj or y % zj as {x, y} �m {xi, xi+1}. Thus, by replacing each xi ↔2 xi+1 by

xi
∗↔%1 xi+1, we obtain x ∗↔%1 y. J

Thus the characterization is directly connected to bounded (ground) convertibility, and
consequently, to ground confluence via Lemma 2. To show the characterization, we need the
following property of the operation Expd [1].

I Proposition 7 (property of Expd). Suppose R is a quasi-reducible TRS and u ∈ B(s).
Then, for any ground constructor substitution σgc, we have sσgc →R ◦ →Expdu(s,t) tσgc.

We now prove the announced characterization.

I Lemma 8. For any s .= t ∈ E∞ and ground substitution σg, sσg
∗↔%R,�E∞ tσg holds.

Proof. If σg is not a ground constructor substitution on V(s) ∪ V(t), then sσg
+→R sρg (or

tσg
+→R tρg) for some ground constructor substitution ρg. Then, we have sσg

+→R sρg ↔E∞

tρg
∗←R tσg. Thus, from R ⊆ �, one easily obtains sσg

∗↔%R,�E∞ tσg. It remains to consider
the case that σg is a ground constructor substitution. By the fairness assumption, some
inference rule is applied to s .= t in some step. We distinguish three cases by the inference
rule applied. Note that H ⊆ E∞ in the following cases.

(Expand) Then we have 〈E] {s .= t}, H〉 ; 〈E ∪ {s′i
.= ti}i, {s → t} ∪ H〉, where

Expdu(s, t) = {si → ti}i, u ∈ B(s), and si
∗→H∪inv(H)% s′i for each i. Since σg is a

ground constructor substitution, by Proposition 7, we have sσg →R siθg →Expdu(s,t) tσg

for some θg and i. Thus, sσg →R siθg
∗→H∪inv(H)% s′iθg ↔E∞ tσg for each i. By R ⊆ �,

we have sσg � siθg. Then, for any step ug ↔H vg in siθg
∗↔H∪inv(H)% s′iθg, we have

sσg � ug, vg, and hence {sσg, tσg} �m {ug, vg}. Thus, sσg
∗↔%R,�E∞ tσg.

(Simplify) Then we have 〈E] {s .= t}, H〉 ; 〈E ∪ {s′ .= t}, H〉 for some E,H, where
s→R∪H� ŝ

∗→H∪inv(H)% s′. Then, s→R∪H� ŝ = s1 ↔H s2 ↔H · · · ↔H sk = s′ ↔E∞ t

with si % si+1 for i = 1, . . . , k − 1. We distinguish two cases.
1. Case s→R ŝ. Then by R ⊆ �, sσg � ŝσg and thus sσg � siσg for i = 1, . . . , k. Hence,

we have {sσg, tσg} �m {siσg, si+1σg} for i = 1, . . . , k−1 and {sσg, tσg} �m {s′σg, tσg}.
Thus, sσg

∗↔%R,�E∞ tσg.
2. Case s→H� ŝ. Then s↔E∞ ŝ with s � ŝ and sσg � siσg for all i = 1, . . . , k. Hence, we

have {sσg, tσg} �m {siσg, si+1σg} for i = 1, . . . , k−1 and {sσg, tσg} �m {s′σg, tσg}. It
remains to show there exists s ∗↔R∪E∞ ŝ such that sσg � ug or t � ug for any midpoint
ug in s ∗↔R∪E∞ ŝ and {sσg, tσg} �m {ug, vg} for any ug↔E∞vg in s ∗↔R∪E∞ ŝ. By
s→H� ŝ, there exists w → ŵ ∈ H such that s = C[wθ] and ŝ = C[ŵθ] for some context

FSCD 2016

33:6 Ground Confluence Prover Based on Rewriting Induction

C and substitution θ. If θg = σg ◦ θ is not a constructor ground substitution on V(w)∪
V(ŵ), then the claim follows as in the case σg is not a constructor ground substitution.
Thus, suppose otherwise. Then, as Expand rule is applied to w .= ŵ with u ∈ B(w),
it follows using Proposition 7 that wθg →R ◦

∗→H∪inv(H)% ◦ ↔E∞ ŵθg. Hence,
sσg = C[wθ]σg = Cσg[wθg] →R wg

∗→H∪inv(H)% ◦ ↔E∞ Cσg[ŵθg] = C[ŵθ]σg = ŝσg

Then sσg � wg. Furthermore, for any step ug ↔H vg in wg
∗→H∪inv(H)% ◦ ↔E∞ ŝσg,

we have {sσg, tσg} �m {ug, vg}. Thus, one obtains sσg
∗↔%R,�E∞ tσg.

(Delete) Then we have 〈E] {s .= t}, H〉; 〈E,H〉, where s = t or s↔H t. The case s = t

is obvious. If s↔H t then there exists s′ .= t′ ∈ E∞ such that s = C[s′θ], t = C[r′θ] for
some θ, and Expand is applied to s′ .= t′. Thus sσg

∗↔%R,�E∞ tσg is shown in the same
way as the case (Simplify)-b. J

I Lemma 9. If 〈E0, ∅〉
∗
; 〈∅, H〉 then E0 is bounded ground convertible.

Proof. We have R ⊆ �. Clearly, the derivation 〈E0, ∅〉
∗
; 〈∅, H〉 is fair. Thus, by Lemma 8,

for any s .= t ∈ E∞, ground substitution σg and ground context C, C[sσg]↔E∞ C[tσg] im-
plies C[sσg] ∗↔%R,�E∞ C[tσg]. Hence, by Lemma 6, C[sσg]↔E∞ C[tσg] implies C[sσg] ∗↔%R
C[tσg]. The claim follows as E0 ⊆ E∞. J

I Remark. If E0 is bounded ground convertible then R |=ind E0. Thus, the lemma above
implies the correctness of our rewriting induction system as an inductive theorem proving
procedure. In particular, the soundness of the basic rewriting induction system (e.g. Figure
1 of [1]) follows. For this system several correctness proofs are known: e.g. the one using
minimal counterexample [13] and the one based on retrogressive property [1].

By Lemmas 2 and 9, our method for ground confluence proving is obtained.

I Theorem 10 (ground confluence check by rewriting induction). Let D = {l(ε) | l→ r ∈ R},
C = F \ D, R a quasi-reducible TRS, and % a reduction quasi-order such that R ⊆ �. If
〈CP(R), ∅〉 ∗; 〈∅, H〉 for some H, then R is ground confluent.

4 Relaxing the Free Constructor Restriction

In the previous section, we have fixed a partition F = D] C as D = {l(ε) | l→ r ∈ R} and
C = F \ D. This setting and the quasi-reducibility assumption on R induce a rather strong
constraint on R. To see this, consider the following example.

I Example 11. Let

R =
{

plus(0, y) → y, plus(s(0), y) → s(y), s(s(x)) → x
}
.

Then {l(ε) | l → r ∈ R} = {plus, s}. However, if we put D = {plus, s} and C = F \ D, then
s(0) is a basic ground term which is a normal form. Then R is not quasi-reducible. On the
other hand, we could have put D = {plus} and C = {s, 0}. In that case R is quasi-reducible.

In other words, the partition F = D]C in the previous section can deal with only TRSs R
having free constructors, i.e. the case T(C) ⊆ NF(R). In this section, we relax this restriction.
From now on, we assume some partition F = D] C has been fixed, and the set of rules
l→ r ∈ R satisfying l(ε) /∈ D is denoted by Rc. To extend the notion of quasi-reducibility
to deal with TRSs with non-free constructors, we first prepare several notions.

I Definition 12 (cover). A set L of terms covers a term t if for any ground constructor
substitution σgc, there exists l ∈ L such that ∃θ. tσgc = lθ.

T. Aoto and Y. Toyama 33:7

The set L (and its variants) appears under various names in the literature [10, 19, 20].

I Definition 13 (pattern). For any f ∈ D, we put

Pat(f,Rc) = {f(x1, . . . , xi−1, w, xi+1, . . . , xn) | 1 ≤ i ≤ n,w ∈ LHS(Rc)}.

where n = ar(f) and x1, . . . , , xn are pairwise distinct variables not in w.

The notion of quasi-reducibility is replaced as follows for arbitrary partition of D] C.

I Definition 14 (strongly quasi-reducible). A TRS R is said to be a strongly quasi-reducible
if for each f ∈ D, LHS(f,R) ∪ Pat(f,Rc) covers f(x1, . . . , xn).

I Example 15 (checking strong quasi-reduciblity). Consider R in Example 11. Take C =
{s, 0} and D = {plus}. Then Rc = {s(s(x)) → x}. We have LHS(plus,R) =
{plus(0, y), plus(s(0), y)} and Pat(f,Rc) = {plus(s(s(x)), y), plus(x, s(s(y)))}. Now one can
check {plus(0, y), plus(s(0), y), plus(s(s(x)), y), plus(x, s(s(y)))} covers plus(x, y), and thus R
is strongly quasi-reducible.

The following lemma easily follows from these definitions.

I Lemma 16. Any strongly quasi-reducible TRS is quasi-reducible.

We also have to replace the operation Expd in our rewriting induction system.

I Definition 17 (⊗, Expdu). Let, for any f ∈ Df ,

Rc ⊗ f = {f(x1, . . . , l
′, . . . , xn)→ f(x1, . . . , r

′, . . . , xn) | l′ → r′ ∈ Rc},

where x1, . . . , xn are supposed to be distinct variables not in l′, r′. Let s = C[u], u ∈ B(s)
and u(ε) = f . We put

Expdu(s, t) = {C[r]µ→ tµ | µ = mgu(l, u), l→ r ∈ (R \Rc) ∪ (Rc ⊗ f)}.

Note l→Rc r for any l→ r ∈ Rc ⊗ f by definition.

I Example 18. Let R be in Example 11, and s = plus(x, s(0)) and t = plus(s(x), 0). Then
Expds(s, t) = {s(0) .= plus(s(0), 0), s(s(0)) .= plus(s(s(0)), 0), plus(y, s(0)) .=
plus(s(s(s(y))), 0)}.

I Lemma 19 (property of Expd). Suppose R is a strongly quasi-reducible TRS and u ∈ B(s).
Then, for any ground constructor substitution σgc, we have sσgc →R ◦ →Expdu(s,t) tσgc.

Proof. Since u ∈ B(s), u = f(u1, . . . , un) for some f ∈ D and constructor terms u1, . . . , un.
Then, since R is strongly quasi-reducible, for any ground constructor substitution σgc, there
exists l ∈ LHS(f,R) ∪ Pat(f,Rc) such that uσgc is an instance of l. Then, since one can
assume V(l) ∩ V(u) = ∅, w.l.o.g. one can let uσgc = lσgc. Then, there exist substitutions
µ = mgu(u, l) and ground substitution θg such that σgc = θg ◦ µ, and we have sσgc =
C[u]σgc = Cσgc[uσgc] = Cσgc[lσgc]→R Cσgc[rσgc] = C[r]µθg →Expdu(s,t) tµθg = tσgc. J

Now by replacing Proposition 7 with Lemma 19, the next theorem follows in the same
way as Theorem 10 for the rewriting induction using the Expd given in Definition 17.

I Theorem 20 (ground confluence for strongly quasi-reducible TRSs). Let F = D] C be an
arbitrary partition. Let R be a strongly quasi-reducible TRS, and % a reduction quasi-order
such that R ⊆ �. If 〈CP(R), ∅〉 ∗; 〈∅, H〉 for some H, then R is ground confluent.

It is easy to see that Theorem 20 generalizes theorem 10, because of the following
observation:

I Lemma 21. Suppose D = {l(ε) | l → r ∈ R} and C = F \ D. Then (1) Rc = ∅ and (2)
any quasi-reducible TRS is strongly quasi-reducible.

FSCD 2016

33:8 Ground Confluence Prover Based on Rewriting Induction

Input: many-sorted TRS R
Output: Success/Failure

1. Compute (possibly multiple) candidates for the partition F = D] C of function symbols.
2. Compute (possibly multiple) candidates for strongly quasi-reducible R0 ⊆ R.
3. Choose one R0 from the candidates, and remove R0 from the candidates list. If no candidate

remains, then choose another candidate of partition to go Step 2 if exists, or else return Failure.
4. Find a reduction quasi-order % such that R0 ⊆ �. If it fails, go to Step 3 to examine another

candidate.
5. Run rewriting induction for proving bounded ground convertibility of CP(R0) with %. If it fails,

go to Step 3 to examine another candidate.
6. Run rewriting induction for proving R0 |=ind (R \ R0). If it fails, go to Step 3 to examine

another candidate. If it succeeds, to return Success.

Figure 2 A ground confluence proving procedure based on rewriting induction.

5 Ground Confluence Proving Procedure

Before presenting our procedure, we introduce the last ingredient of our ground confluence
proof, which one can prove easily:

I Theorem 22. Let R be a TRS. Suppose R0 ⊆ R is ground confluent. If R0 |=ind R \R0
then R is ground confluent.

Hence, we divide the problem of ground confluence of R into the problem of ground confluence
of R0 and the problem of inductive validity R0 |=ind R \ R0. In Figure 2, we present our
procedure for proving ground confluence of many-sorted TRSs.

I Example 23 (strongly quasi-reducible subsets). Consider a TRS

R =
{

plus(0, y) → y (a) plus(s(x), y) → s(plus(x, y)) (b)
plus(x, 0) → plus(0, x) (c) plus(x, s(y)) → plus(s(y), x) (d)

}
Then {(a), (b)}, {(c), (d)} and R are all strongly quasi-reducible. However, the only choice
of R0 = {(a), (b)} is successful for finding ground confluence proof in our method.

I Example 24 (strongly quasi-reducible subsets). Consider a TRS

R =


plus(0, y) → y (a) plus(s(0), y) → s(y) (b)
plus(plus(x, y), z) → plus(x, plus(y, z)) (c) s(s(x)) → s(x) (e)
plus(x, y) → plus(y, x) (e) s(x) → s(s(x)) (f)


Then {(a), (b), (e)}, {(a), (f)} and {(d), (f)} are all strongly quasi-reducible, where the
first one takes C = {0, s} while the latter two take C = {0}. However, the only choice of
R0 = {(a), (b), (e)} is successful for finding ground confluence proof in our method.

6 Implementation and Experiments

Our tool AGCP is written in SML/NJ. Some program code are incorporated from con-
fluence prover ACP [6] and an inductive theorem prover [2]. The tool is obtained from

T. Aoto and Y. Toyama 33:9

(FUN
plus : Nat,Nat -> Nat
s : Nat -> Nat
0 : Nat

)
(VAR

x : Nat
y : Nat

)
(RULES

plus(0,0) -> 0
plus(s(x),y) -> s(plus(x,y))
plus(x,s(y)) -> s(plus(y,x))

)

Figure 3 An example of input: specification of a many-sorted TRS.

http://www.nue.ie.niigata-u.ac.jp/tools/agcp/. The format of input TRSs basically
follows old TPDB format of first-order TRSs; the only difference is the addition of sort
declarations. In Figure 3, we present an example of input file.

Some heuristics implicit in the procedure are described below.
We impose a timeout for each of Steps 1, 5 and 6.
In Step 2, as the candidates for R0 ⊆ R, we only take those with minimal set of rewrite
rules i.e. those R0 such that any R′0 (R0 is not a quasi-reducible.
In Step 4, we restrict ourselves to multiset path orderings based on total precedence. We
encoded the condition R0 ⊆ % as a constraint on precedence and find a precedence which
meets the condition by a SMT solver.
In Expand inferences, among equations, one with the smallest size are expanded. If l � r
or r � l holds, then the larger side is expanded. Among basic subterms, the older one is
expanded. Here, a subterm is younger if it contains a newer created variable.
In Expand and Simplify inferences, ∗→H∪inv(H)% -part is tried only if successive applications
of Simplify occur: just after Expand, the expanded side is simplified by s (∗→H∪inv(H)%

◦ →R0∪H�)∗ s′, and multiple Simplify steps are applied by →R0∪H� ◦ (∗→H∪inv(H)%

◦ →R0∪H�)∗.

We have tested our ground confluence prover with 121 (many-sorted) TRSs—23 are
constructed in the course of our study and 98 are incorporated from Cops1. Since Cops is a
database of confluence problems, their signatures are unsorted. Also, there is no declaration
of the signature. Hence, we have inspected the problems and identified a set of function
symbols and attached them sorts naturally guessed. More than half Cops problems whose
appropriate sorts are hardly imagined are dropped. Among newly constructed 23 problems, 4
problems are incorporated from the literature [7, 14, 18]. Others are constructed by starting
with basic TRSs such as addition of natural numbers, and then add variations and extensions
of them, trying to make them possibly ground confluent, where this collection includes
Examples 1, 15, 23 and 24.

1 Confluence Problem Database http://cops.uibk.ac.at/.

FSCD 2016

http://www.nue.ie.niigata-u.ac.jp/tools/agcp/
http://cops.uibk.ac.at/

33:10 Ground Confluence Prover Based on Rewriting Induction

Table 1 Summary of experiments.

sources number success timeout time (msec)
Example 1 – X – 8
Example 15 – X – 8
Example 23 – X – 11
Example 24 – X – 10
Cops confluent 88 62 4 –
Cops non_confluent 3 1 0 –
Cops !confluent !non_confluent 7 3 0 –
Crafted 23 20 2 –

Tests are performed on a PC with one 2.50GHz CPU and 4G memory. We impose 60 (5,
1) seconds time limit total (resp. rewriting induction proof, computation of constructors).

Table 1 shows a summary of experiments. The columns below ‘sources’ and ‘number’
denote the number of TRSs and their sources. ‘Cops confluent’ (‘Cops non_confluent’,
‘Cops !confluent !non_confluent’) denotes problems incorporated from Cops problems
that have been proved or non-proved (non-)confluent by state-of-the-art confluence provers.
Note such confluence provers prove (non-)confluent of unsorted versions of the problems, but
that of the many-sorted ones follow by persistency [5]. Similarly, among ‘Crafted’ problems,
11 problems are proved to be confluent and the others non-confluent by ACP [6]. The
columns below ‘Success’ show results for each example in the present paper (X for success),
and the numbers of problems from the collections that succeed. The columns below ‘timeout’
(‘time (msec)’) show the number of occurrences of timeout (run time shown in milliseconds,
respectively).

Among 121 problems, our prover succeeded in proving ground confluence of 86 problems.
Our procedures failed on some particular types of term rewriting systems. Firstly, those that
have a defined symbol specified by non-terminating rules such as nats→ cons(0, inc(nats))).
In such a case, the non-terminating rule is not an inductive theorem and hence it is included
to the rule part. However, in the current approach, the rule part needs to be terminating,
and thus our procedure failed to deal with such a case. Similarly, if AC-rules needs to be act
as rewrite rules, then our method does not work—our method can deal with AC-rules only if
they are inductive theorems:

I Example 25 (Cops 183).

R =


+(0, x) → x +(x, 0) → x

+(1,−(1)) → 0 +(−(1), 1) → 0
−(0) → 0 −(−(x)) → x

−(+(x, y)) → +(−(x),−(y))
+(+(x, y), z) → +(x,+(y, z)) +(x, y) → +(y, x)


Here, for example, the computation of +(+(1, 1),+(−(1),−(1))) ∗→ 0 needs to use AC-rules.
Thus AC-rules are included in the rule part, and hence its termination proof fails. Our
approach can not handle problems of this type.

Some failures are due to incapability of non-ground-confluence checking. We expect some
simple non-ground-confluence check should be useful, but currently it is not included in
our tool. It also seems inclusion of stronger termination criteria would have stopped some
failures in early stages of proofs, and inclusion of lemma generation methods in inductive

T. Aoto and Y. Toyama 33:11

theorem proving would have solved at least one problem. Other reasons of failure include
incapability of dealing with non-left-linear rules in strong quasi-reducibility checking.

Five timeouts are raised in rewriting induction proofs and one is in computation of
constructor symbols. Two timeouts in a problem helped to switch the choice of R0 so as to
succeed in that problem.

All details of the experiments are available on the webpage http://www.nue.ie.niigata-u.
ac.jp/tools/agcp/experiments/fscd16/.

7 Conclusion

We have reported a ground confluence prover based on a variant of rewriting induction. We
have also proved the correctness of our method. In contrast to many existing works on
ground confluence, we focused on the pure many-sorted TRSs. Obviously, one can also use
confluence provers such as [6, 27] to guarantee ground confluence, and to use more stronger
inductive theorem proving methods or lemma generation methods such as [2, 3, 4, 22, 25]
at inductive theorem proving part, in order to get a more powerful tool. Developing such a
powerful tool stands as a long-term goal.

Acknowledgements. Thanks are due to the anonymous reviewers for helpful comments.
This work is partially supported by JSPS KAKENHI Nos. 15K00003, 25280025.

References
1 T. Aoto. Dealing with non-orientable equations in rewriting induction. In Proc. of 17th

RTA, volume 4098 of LNCS, pages 242–256. Springer-Verlag, 2006.
2 T. Aoto. Designing a rewriting induction prover with an increased capability of non-

orientable equations. In Proc. of 1st SCSS, RISC Technical Report, pages 1–15, 2008.
3 T. Aoto. Sound lemma generation for proving inductive validity of equations. In Proc. of

28th FSTTCS, volume 2 of LIPIcs, pages 13–24. Schloss Dagstuhl, 2008.
4 T. Aoto and S. Stratulat. Decision procedures for proving inductive theorems without

induction. In Proc. of 16th PPDP, pages 237–248. ACM Press, 2014.
5 T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal Computer Science,

3(11):1134–1147, 1997.
6 T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proc. of 20th RTA, volume 5595 of LNCS, pages 93–102. Springer-Verlag,
2009.

7 K. Becker. Proving ground confluence and inductive validity in constructor based equational
specifications. In Proc. of 4th TAPSOFT, volume 668 of LNCS, pages 46–60. Springer-
Verlag, 1993.

8 A. Bouhoula. Simultaneous checking of completeness and ground conflunce for algebraic
specifications. ACM Transactions on Computational Logic, 10(2):20:1–33, 2009.

9 A. Bouhoula and F. Jacquemard. Verifying regular trace properties of secuirty protocols
with explicit destructors and implicit induction. In Proc. of FCS-ARSPA, pages 27–44,
2007.

10 A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction.
Journal of Logic and Computation, 5(5):631–668, 1995.

11 Y. Chiba, T. Aoto, and Y. Toyama. Program transformation by templates based on term
rewriting. In Proc. of 7th PPDP, pages 59–69. ACM Press, 2005.

12 M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints for LPO ter-
mination. In Proc. of 17th RTA, volume 4098 of LNCS, pages 4–18. Springer-Verlag, 2006.

FSCD 2016

http://www.nue.ie.niigata-u.ac.jp/tools/agcp/experiments/fscd16/
http://www.nue.ie.niigata-u.ac.jp/tools/agcp/experiments/fscd16/

33:12 Ground Confluence Prover Based on Rewriting Induction

13 N. Dershowitz and U. S. Reddy. Deductive and inductive synthesis of equational programs.
Journal of Symbolic Computation, 15:467–494, 1993.

14 L. Fribourg. A strong restriction of the inductive completion procedure. Journal of Symbolic
Computation, 8:253–276, 1989.

15 H. Ganzinger. Ground term confluence in parametric conditional equational specifications.
In Proc. of 4th STACS, volume 247 of LNCS, pages 286–298, 1987.

16 R. Göbel. Ground confluence. In Proc. of 2nd RTA, volume 256 of LNCS, pages 156–167,
1987.

17 N. Hirokawa and D. Klein. Saigawa: A confluence tool. In Proc. of 1st IWC, page 49, 2012.
18 D. Kapur, P. Narendran, and F. Otto. On ground-confluence of term rewriting systems.

Information and Computation, 86:14–31, 1990.
19 D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related properties

of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.
20 D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test

sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.
21 K. Sato, K. Kikuchi, T. Aoto, and Y. Toyama. Correctness of context-moving transforma-

tions for term rewriting systems. In Proc. of 25th LOPSTR, volume 9527 of LNCS, pages
331–345. Springer-Verlag, 2015.

22 S. Shimazu, T. Aoto, and Y. Toyama. Automated lemma generation for rewriting induction
with disproof. JSSST Computer Software, 26(2):41–55, 2009. In Japanese.

23 T. Sternagel and A. Middeldorp. Conditional confluence (system description). In Proc. of
Joint 25th RTA and 12th TLCA, pages 456–465. Springer-Verlag, 2014.

24 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
25 T. Walsh. A divergence critic for inductive proof. Journal of Artificial Intelligence Research,

4:209–235, 1996.
26 F. Winkler and B. Buchberger. A criterion for eliminating unnecessary reductions in the

Knuth-Bendix algorithm. In Proc. of the Colloq. on Algebra, Combinatorics and Logic in
Computer Science, Vol. II, pages 849–869. Springer-Verlag, 1985.

27 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. of 23rd
CADE, volume 6803 of LNAI, pages 499–505. Springer-Verlag, 2011.

	Introduction
	Preliminaries
	Rewriting Induction for Ground Confluence
	Relaxing the Free Constructor Restriction
	Ground Confluence Proving Procedure
	Implementation and Experiments
	Conclusion

