
A Reduction-Preserving Completion for Proving
Confluence of Non-Terminating Term Rewriting
Systems
Takahito Aoto1 and Yoshihito Toyama1

1 RIEC, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
{aoto,toyama}@nue.riec.tohoku.ac.jp

Abstract
We give a method to prove confluence of term rewriting systems that contain non-terminating
rewrite rules such as commutativity and associativity. Usually, confluence of term rewriting
systems containing such rules is proved by treating them as equational term rewriting systems
and considering E-critical pairs and/or termination modulo E. In contrast, our method is based
solely on usual critical pairs and usual termination. We first present confluence criteria for term
rewriting systems whose rewrite rules can be partitioned into terminating part and possibly
non-terminating part. We then give a reduction-preserving completion procedure so that the
applicability of the criteria is enhanced. In contrast to the well-known Knuth-Bendix completion
procedure which preserves the equivalence relation of the system, our completion procedure
preserves the reduction relation of the system, by which confluence of the original system is
inferred from that of the completed system.

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs; F.4.2 [Mathematical Logic and Formal Languages]: Grammars and Other Rewriting
Systems; I.2.2 [Artificial Intelligence]: Automatic Programming

Keywords and phrases Confluence, Completion, Equational Term Rewriting Systems, Conflu-
ence Modulo Equations

Digital Object Identifier 10.4230/LIPIcs.RTA.2011.91

Category Regular Research Paper

1 Introduction

Confluence is one of the most important properties of term rewriting systems (TRSs for short)
and hence many efforts have been spent on developing techniques to prove this property
[3, 15]. One of the classes of TRSs for which many known confluence proving methods are
not effective is the class of TRSs containing associativity and commutativity rules (AC-rules).
Such TRSs are non-terminating by the existence of AC-rules (more precisely, commutativity
rules are self-looping and associativity rules are looping under the presence of commutativity
rules) and hence the Knuth-Bendix criterion does not apply. Furthermore, confluence criteria
regardless of termination based on critical pairs often do not apply either.

A well-known approach to deal with TRSs containing AC-rules is to deal them as
equational term rewriting systems [6, 7, 13]. In this approach, non-terminating rules such as
AC-rules are treated exceptionally as an equational subsystem E . Then the confluence of
equational term rewriting system 〈R, E〉 is obtained if R is terminating modulo E [6, 7, 13]

© Takahito Aoto and Yoshihito Toyama;
licensed under Creative Commons License NC-ND

22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß; pp. 91–106

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.91
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

92 A Reduction-Preserving Completion for Proving Confluence

and either E-critical pairs of R satisfy certain conditions [7, 13] or R is left-linear and
E/R-critical pairs satisfy a certain condition [6]. This approach, however, only works if R is
terminating modulo E . Furthermore, the computation of E-critical pairs requires a finite and
complete E-unification algorithm which depends on E .

In this paper, we give a method to prove confluence of TRSs that contain non-terminating
rewrite rules such as AC-rules. In contrast to the traditional approach described above, our
method is based solely on usual critical pairs and usual termination. Thus the implementation
of the method requires little special ingredients and the method is easily integrated into
confluence provers to combine with other confluence proving methods. We first present
confluence criteria for TRSs whose rewrite rules can be partitioned into terminating part and
possibly non-terminating part (Section 3). We then give a reduction-preserving completion
procedure so that the applicability of the criteria is enhanced (Section 4). In contrast to the
well-known Knuth-Bendix completion procedure which preserves the equivalence relation
of the system, our completion procedure preserves the reduction relation of the system, by
which confluence of the original system is inferred from that of the completed system. Finally
we report on our implementation and results of experiments (Section 5).

2 Preliminaries

This section fixes some notions and notations used in this paper. We refer to [3] for omitted
definitions.

Let→ be a relation on a set A. The reflexive closure (the symmetric closure, the transitive
closure, the reflexive and transitive closure, the equivalence closure) of → is denoted by =→
(↔, +→, ∗→ ∗↔, respectively). The union →i ∪→j of indexed relations →i and →j is written
as →i∪j . A symmetric relation is written as à. A relation → is well-founded if there exists
no infinite descending chain a0 → a1 → · · · . The composition of relations R,S is written as
R ◦ S. A relation → on a set A is confluent if ∗←◦ ∗→ ⊆ ∗→◦ ∗← holds.

Let F be a set of arity-fixed function symbols and V be the set of variables. The set
of terms over F and V is denoted by T(F ,V). The sets of function symbols and variables
occurring in a term t are denoted by F(t) and V(t), respectively. A linear term is a term in
which any variable occur at most once. Positions are finite sequences of positive integers.
The empty sequence is denoted by ε. The set of positions in a term t is denoted by Pos(t).
The concatenation of positions p, q is denoted by p.q. We use ≤ for prefix ordering on
positions, i.e. p ≤ q iff ∃o. p.o = q. For p, q such that p ≤ q, the position o satisfying p.o = q

is denoted by p\q. Positions p1, . . . , pn are parallel if pi 6≤ pj for any i 6= j. We write p ‖ q
if two positions p, q are parallel. If p is a position in a term t, then the symbol in t at the
position p is written as t(p), the subterm of t at the position p is written as t/p, and the
term obtained by replacing the subterm t/p by a term s is written as t[s]p. For X ⊆ F ∪ V,
we put PosX(t) = {p ∈ Pos(t) | t(p) ∈ X}. For parallel positions p1, . . . , pn in a term t, the
term obtained by replacing each subterm t/pi by a term si is written as t[s1, . . . , sn]p1,...,pn .
A map σ from V to T(F ,V) is a substitution if the domain dom(σ) of σ is finite where
dom(σ) = {x ∈ V | σ(x) 6= x}. As usual, we identify each substitution with its homomorphic
extension. For a substitution σ and a term t, σ(t) is also written as tσ. For a set E of
equations, we write E−1 = {r ≈ l | l ≈ r ∈ E}. A set E = {s1 ≈ t1, . . . , sn ≈ tn} of equations
is unifiable if there exists a substitution σ such that siσ = tiσ for all i; the substitution σ is
a unifier of E . A relation R on T(F ,V) is stable if for any terms s, t ∈ T(F ,V), s R t implies
sθ R tθ for any substitution θ; it is monotone if s R t implies f(. . . , s, . . .)R f(. . . , t, . . .) for
any f ∈ F . A relation R on T(F ,V) is a rewrite relation if it is stable and monotone.

Takahito Aoto and Yoshihito Toyama 93

An equation l ≈ r is a rewrite rule if it satisfies the conditions (1) l /∈ V and (2)
V(l) ⊆ V(r). A rewrite rule l ≈ r is written as l → r. Rewrite rules are identified modulo
renaming of variables. A rewrite rule l→ r is linear (left-linear) if l, r is linear (l is linear,
respectively); it is bidirectional if r ≈ l is a rewrite rule. A term rewriting system (TRS
for short) is a finite set of rewrite rules. A TRS is left-linear (linear, bidirectional) if so
are all its rewrite rules. If a TRS R is bidirectional then R−1 = {r → l | l → r ∈ R} is
a TRS. Let R be a TRS. If there exists a rewrite rule l → r ∈ R and a position p in a
term s and substitution θ such that s/p = lθ and t = s[rθ]p, we write s →p,R t. If not
necessary, s →p,R t is written as s →R t or s → t. We call s →R t a rewrite step; →R is
a rewrite relation and called the rewrite relation of R. A term s is normal if s →R t for
no term t. The set of normal terms is denoted by NF(R). A normal form (or R-normal
form) of a term s is a term t ∈ NF(R) such that s ∗→R t. A TRS R is terminating if
→R is well-founded; R is confluent if →R is confluent. The parallel extension →++R of the
rewrite relation →R and the parallel extension ↔++R of the symmetric closure ↔R of the
rewrite relation →R are defined like this: s→++ {p1,...,pn},R t (s↔++ {p1,...,pn},R t) iff p1, . . . , pn

are parallel positions in the term s and there exist rewrite rules l1 → r1, . . . , ln → rn ∈ R
(equations l1 ≈ r1, . . . , ln ≈ rn ∈ R ∪ R−1, respectively) and substitution θ1, . . . , θn such
that s/pi = liθi for each i and t = s[r1θ1, . . . , rnθn]p1,...,pn . If not necessary, s→++ {p1,...,pn},R t

(s↔++ {p1,...,pn},R t) is written as s→++R t or s→++ t (s↔++R t or s↔++ t, respectively). We call
s→++R t a parallel rewrite step. We note that →++R is a reflexive rewrite relation and ↔++R is a
reflexive symmetric rewrite relation. Note that ↔++R differs from the symmetric closure of
→++R in general and coincides with →++R∪R−1 if R is bidirectional.

Let s, t be terms whose variables are disjoint. The term s overlaps on t (at a position p)
when there exists a non-variable subterm u = t/p of t such that u and s are unifiable. Let
l1 → r1 and l2 → r2 be rewrite rules w.l.o.g. whose variables are disjoint. Suppose that l1
overlaps on l2 at a position p and σ is the most general unifier of l1 and l2/p. Then the term
l2[l1]pσ yields a critical pair 〈l2[r1]pσ, r2σ〉 obtained by the overlap of l1 → r1 on l2 → r2
at the position p. In the case of self-overlap (i.e. when l1 → r1 and l2 → r2 are identical
modulo renaming), we do not consider the case p = ε. We call the critical pair outer if
p = ε and inner if p > ε. The set of outer (inner) critical pairs obtained by the overlaps of a
rewrite rule from R1 on a rewrite rule from R2 is denoted by CPout(R1,R2) (CPin(R1,R2),
respectively). We put CP(R1,R2) = CPout(R1,R2)∪CPin(R1,R2). Critical pairs are often
regarded as equations.

3 Confluence criteria

In this section, we give new confluence criteria for term rewriting systems. We first present
an abstract confluence criterion that will be used as the basis of our confluence criteria.

I Lemma 3.1. Let à0,→1 be relations on a set A such that à0 is symmetric and →1
is well-founded. Let →0∪1 = à0 ∪ →1. Suppose (i) ←1 ◦ →1 ⊆

∗→1 ◦ à
=

0 ◦
∗←1 and (ii)

à0 ◦→1 ⊆
∗→1 ◦ à

=
0 ◦

∗←1. Then ∗↔0∪1 ⊆
∗→1 ◦ à

∗
0 ◦

∗←1.

Proof. Let the weight of a rewrite step a↔0∪1 b be given by the multiset w(a↔0∪1 b) defined
like this: w(a à0 b) = {a, b}, w(a →1 b) = {a} and w(a ←1 b) = {b}. For each rewrite
sequence a0 ↔0∪1 a1 ↔0∪1 · · · ↔0∪1 an let its weight be the multiset consisting of the weights
of the rewrite steps ai ↔0∪1 ai+1, i.e. {w(a0 ↔0∪1 a1), w(a1 ↔0∪1 a2), . . . , w(an−1 ↔0∪1

an)}. Let � be the multiset extension of the well-founded order +→1 and �mul the multiset
extension of �. We show by noetherian induction on the weight of the rewrite sequence

RTA’11

94 A Reduction-Preserving Completion for Proving Confluence

w.r.t. �mul that for any rewrite sequence a0
∗↔0∪1 an there exists a rewrite sequence

a0
∗→1 ◦ à

∗
0 ◦

∗←1 an.
1. Suppose there exists k such that ak−1 ←1 ak →1 ak+1. Then by assumption (i), there exist

b0, . . . , bm such that ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1. Thus we have a rewrite
sequence a0

∗↔0∪1 ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1
∗↔0∪1 an. We now show this

new rewrite sequence has less weight than the original rewrite sequence a0
∗↔0∪1 an. We

here only show the case of l 6= 0, l + 1 6= m and bl à0 bl+1. Then the weight decreases
as {. . . , {ak}, {ak}, . . .} �mul {. . . , {b0}, . . . , {bl−1}, {bl, bl+1}, {bl+2}, . . . , {bm}, . . .}. For
other cases, one can easily check that the weight of the rewrite sequence decreases in a
similar way. Thus, it follows that there exists a rewrite sequence a0

∗→1 ◦ à
∗

0 ◦
∗←1 an by

the induction hypothesis.
2. Suppose that there exists k such that ak−1 à0 ak →1 ak+1. Then by assumption (ii),

there exist b0, . . . , bm such that ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1. Thus we have
a rewrite sequence a0

∗↔0∪1 ak−1 = b0
∗→1 bl à

=
0 bl+1

∗←1 bm = ak+1
∗↔0∪1 an. In a way

similar to the first case, one can easily check that this new rewrite sequence has less weight
than the original rewrite sequence a0

∗↔0∪1 an. We here only show the case of l 6= 0,
l + 1 6= m and bl à0 bl+1. Then the weight decreases as {. . . , {b0, ak}, {ak}, . . .} �mul
{. . . , {b0}, . . . , {bl−1}, {bl, bl+1}, {bl+2}, . . . , {bm}, . . .}. Thus, it follows that there exists
a rewrite sequence a0

∗→1 ◦ à
∗

0 ◦
∗←1 an by the induction hypothesis.

3. Suppose that there exists k such that ak−1 ←1 ak à0 ak+1. Then one can show that
there exists a rewrite sequence a0

∗→1 ◦ à
∗

0 ◦
∗←1 an in the same way as the case (2).

4. It remains to show the case that (α) there exists no k such that ak−1 ←1 ak →1 ak+1,
(β) there exists no k such that ak−1 à0 ak →1 ak+1 and (γ) there exists no k such that
ak−1 ←1 ak à0 ak+1. We show by induction on the length of a0

∗↔0∪1 an that this
rewrite sequence has the form a0

∗→1 ◦ à
∗

0 ◦
∗←1 an. The case n = 0 is trivial. Suppose

a0 ↔0∪1 a1
∗↔0∪1 an. By induction hypothesis we have a1

∗→1 al à
∗

0 am
∗←1 an. We

distinguish three cases:
a. Case of a0 à0 a1. By (β), it follows that we have a0 à0 a1 = al à

∗
0 am

∗←1 an.
Hence the conclusion follows.

b. Case of a0 →1 a1. Since we have a0 →1 a1
∗→1 al à

∗
0 am

∗←1 an, the conclusion
follows.

c. Case of a0 ←1 a1. Then by (α), it follows that we have a0 ←1 a1 = al à
∗

0 am
∗←1 an.

Furthermore, by (γ), it follows that a0 ←1 a1 = al = am
∗←1 an. Hence the conclusion

follows.
J

I Remark. Let ∼ be an equivalence relation on a set A. Then a relation →1 on A is said to
be confluent modulo ∼ (CR∼) if ∗←1 ◦ ∼ ◦

∗→1 ⊆
∗→1 ◦ ∼ ◦

∗←1 holds; locally confluent modulo
∼ (LCR∼) if (i′) ←1 ◦ →1 ⊆

∗→1 ◦ ∼ ◦
∗←1 and (ii′) ∼ ◦→1 ⊆

∗→1 ◦ ∼ ◦
∗←1 hold [6]. It is

shown in [6] that CR∼ and LCR∼ coincide provided that →1 is well-founded. Suppose →1
is well-founded and ∼ = à∗ 0. Then the property CR∼ is equivalent to the conclusion of the
lemma, i.e. ∗↔0∪1 ⊆

∗→1 ◦ à
∗

0 ◦
∗←1; hence so are (i′) and (ii′). In our lemma, in contrast to

(i′) and (ii′), the condition part of (ii) are localized (i.e. we only assume à0 ◦ →1 rather
than à∗ 0 ◦→1) in price of requesting joinability sequences to have zero or one à0-step in
the conclusion part of (i) and (ii) (i.e. we need to guarantee ∗→1 ◦ à

=
0 ◦

∗←1 rather than
∗→1 ◦ à

∗
0 ◦

∗←1). A different localization given in [6] is that if →1 ◦ ∼ is well-founded then
(i′) ←1 ◦→1 ⊆

∗→1 ◦ ∼ ◦
∗←1 and (iii′) à0 ◦→1 ⊆

∗→1 ◦ ∼ ◦
∗←1 imply CR∼. Contrast to our

lemma, this localization allows an arbitrary number of à0-steps in the conclusion part of (i′)
and (iii′) in price of requesting (not only →1 but) →1 ◦ ∼ is well-founded. In [8] (see also

Takahito Aoto and Yoshihito Toyama 95

[9]), another localization is obtained: if →1 is well-founded then (i′) ←1 ◦→1 ⊆
∗→1 ◦∼ ◦

∗←1

and (iv′) à0 ◦ →1 ⊆
+→1 ◦ ∼ imply CR∼ (and that →1 ◦ ∼ is well-founded). Contrast to

our lemma, this localization allows an arbitrary number of à0-steps in the conclusion part
of (i′) and (iv′) in price of restricting the form of joinability sequences in the conclusion part
of (iv′).

I Theorem 3.2 (abstract confluence criterion). Let à0,→1 be relations on a set A such that
à0 is symmetric and →1 is well-founded. Let →0∪1 = à0 ∪→1. Suppose (i) ←1 ◦ →1 ⊆
∗→1 ◦ à

=
0 ◦

∗←1 and (ii) à0 ◦→1 ⊆
∗→1 ◦ à

=
0 ◦

∗←1. Then →0∪1 is confluent.

Proof. We prove ∗↔0∪1 ⊆
∗→0∪1 ◦

∗←0∪1. Suppose a ∗↔0∪1 b. Then a ∗→1 ◦ à
∗

0 ◦
∗←1 b by

Lemma 3.1. Hence a ∗→0∪1 ◦
∗←0∪1 b. J

For the rest of this section, we develop some confluence criteria for TRSs based on this
abstract confluence criterion.

I Lemma 3.3. Let S be a TRS and à be a symmetric rewrite relation. Suppose that
CP(S,S) ⊆ ∗→S ◦ à

= ◦ ∗←S . Then ←S ◦→S ⊆
∗→S ◦ à

= ◦ ∗←S .

Proof. Suppose t0 ←p,S s→q,S t1. We distinguish the cases by relative positions of p and q.
The case of p ‖ q is straightforward. Suppose q ≤ p. Let s/q = lσ and l→ r ∈ S. Then either
(1) q\p ∈ PosF (l) or (2) there exists qx ∈ PosV(l) such that l/qx = x ∈ V and q.qx ≤ p.
1. Then t0 = s[uρ]q and t1 = s[vρ]q for some 〈u, v〉 ∈ CP(S,S) and substitution ρ. Thus

by assumption u ∗→S u′ à
=
v′
∗←S v for some u′, v′. Then, since à= and →S are rewrite

relations, we have t0 = s[uρ]q
∗→S s[u′ρ]q à

=
s[v′ρ]q

∗←S s[vρ]q = t1.
2. Then t1 = s[rσ]q and s = s[lσ]q →p,S t0

∗→S s[lσ′]q for some substitution σ′ such that
σ(x)→(q.qx)\p,S σ

′(x) and σ′(y) = σ(y) for any y 6= x. Thus t0
∗→S s[lσ′]q →S s[rσ′]q

∗←S
s[rσ]q = t1. The claim follows since à= is reflexive.

The case of p ≤ q follows similarly to the case of q ≤ p, using the symmetry of à= . J

I Lemma 3.4. Let P,S be TRSs. Suppose that CP(S,S) ⊆ ∗→S ◦ ↔++P ◦
∗←S . Then

←S ◦→S ⊆
∗→S ◦↔++P ◦

∗←S .

Proof. Take à :=↔++P (hence à= =↔++P) in Lemma 3.3. J

I Lemma 3.5. Let P,S be TRSs such that S is left-linear and P is bidirectional. Suppose
(i) CPin(P ∪ P−1,S) = ∅ and (ii) CP(S,P ∪ P−1) ⊆ ∗→S ◦ ↔++P ◦

∗←S . Then ↔++P ◦ →S ⊆
∗→S ◦↔++P ◦

∗←S .

Proof. Suppose t0 ←++ U,P∪P−1 s→q,S t1. Let U = {p1, . . . , pn} where p1, . . . , pn are positions
from left to right, s/pi = liσi for li → ri ∈ P ∪ P−1 and substitutions σi (1 ≤ i ≤ n) and
s/q = l′ρ for l′ → r′ ∈ S and a substitution ρ. We distinguish two cases: (1) the case that
∃p ∈ U. p ≤ q and (2) the case that ∀p ∈ U. p 6≤ q.
1. Suppose pi ∈ U and pi ≤ q. Then either (a) pi\q ∈ PosF (li) or (b) there exists

px ∈ PosV(li) such that li/px = x ∈ V and pi.px ≤ q.
a. Then t0/pi = vρ and t1/pi = uρ for some 〈u, v〉 ∈ CP(S,P ∪ P−1) and substitution ρ.

Then, from our assumption (ii), we have u ∗→S u′ ↔++P v′
∗←S v for some u′, v′. Thus

t0/pi = vρ
∗→S v′ρ↔++P u′ρ

∗←S uρ = t1/pi. Hence we have

t0 = s[r1σ1, . . . , t0/pi, . . . , rnσn]p1,...,pi,...,pn
∗→S s[r1σ1, . . . , v

′ρ, . . . , rnσn]p1,...,pi,...,pn

↔++P s[l1σ1, . . . , u
′ρ, . . . , lnσn]p1,...,pi,...,pn

∗←S s[l1σ1, . . . , t1/pi, . . . , lnσn]p1,...,pi,...,pn
= t1.

RTA’11

96 A Reduction-Preserving Completion for Proving Confluence

b. Then t0/pi = riσi and t1/pi
∗→S liσ′i for some substitution σ′i such that σi(x)→(pi.px)\q,S

σ′i(x) and σ′i(y) = σi(y) for any y 6= x. Thus we have

t0 = C[r1σ1, . . . , riσi, . . . , rnσn]p1,...,pi,...,pn
∗→S C[r1σ1, . . . , riσ

′
i, . . . , rnσn]p1,...,pi,...,pn

↔++P C[l1σ1, . . . , liσ
′
i, . . . , lnσn]p1,...,pi,...,pn

∗←S C[l1σ1, . . . , t1/pi, . . . , lnσn]p1,...,pi,...,pn
= t1.

2. Suppose ∀p ∈ U. p 6≤ q. Let U ′ = {pi ∈ U | q < pi} = {pl, . . . , pk}, qi = q\pi for
l ≤ i ≤ k, and thus l′ρ = l′ρ[llσl, . . . , lkσk]ql,...,qk

. By our assumption (i), for each
pi ∈ U ′ there exists qx ∈ PosV(l′) such that l′/qx = x ∈ V and q.qx ≤ pi. Thus,
s/q = l′ρ = l′ρ[llσl, . . . , lkσk]ql,...,qk

→S r′ρ = r′ρ[lj1σj1 , . . . , ljm
σjm

]o1,...,om
= t1/q for

some positions o1, · · · , om and j1, . . . , jm ∈ {l, . . . , k}. Furthermore, by the left-linearity
of S, we have l′ρ[rlσl, . . . , rkσk]ql,...,qk

→S r′ρ[rj1σj1 , . . . , rjm
σjm

]o1,...,om
. Thus,

t0 = s[r1σ1, . . . , l
′ρ[rlσl, . . . , rkσk]ql,...,qk

, . . . , rnσn]p1,...,q,...,pn

→S s[r1σ1, . . . , r
′ρ[rj1σj1 , . . . , rjm

σjm
]o1,...,om

, . . . , rnσn]p1,...,q,...,pn

↔++P s[l1σ1, . . . , r
′ρ[lj1σj1 , . . . , ljm

σjm
]o1,...,om

, . . . , lnσn]p1,...,q,...,pn
= t1.

J

I Definition 3.6 (reversible relation). A relation → is said to be reversible if → ⊆ ∗←. A
TRS R is reversible if →R is reversible.

Note that, by the definition of rewrite rules, reversible TRSs are bidirectional.

I Theorem 3.7 (confluence criterion). Let P,S be TRSs such that S is left-linear and
terminating and P is reversible. Suppose (i) CP(S,S) ⊆ ∗→S ◦ ↔++P ◦

∗←S , (ii) CPin(P ∪
P−1,S) = ∅ (iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦↔++P ◦

∗←S . Then S ∪ P is confluent.

Proof. By our assumption (i) and Lemma 3.4, we have (a) ←S ◦ →S ⊆
∗→S ◦ ↔++P ◦

∗←S .
From our assumptions (ii) and (iii), it follows that (b) ↔++P ◦ →S ⊆

∗→S ◦ ↔++P ◦
∗←S by

Lemma 3.5. Take à0 := ↔++P and →1 := →S . Then, by the termination of S, →1 is
well-founded. Hence by Theorem 3.2, ↔++P ∪ →S is confluent. Furthermore, since →P is
reversible, →P ⊆ ↔++P ⊆

∗→P . Hence →P∪S is confluent. J

We are now going to slightly weaken the condition (ii) CPin(P∪P−1,S) = ∅ of the theorem
using the notion of parallel critical pairs [5, 14]. Let s1, . . . , sn, t be terms whose variables are
disjoint. The terms s1, . . . , sn parallel-overlap on t (at parallel positions p1, . . . , pn) if t/pi /∈ V
for any 1 ≤ i ≤ n and {s1 ≈ t/p1, . . . , sn ≈ t/pn} is unifiable. Let l1 → r1, . . . , ln → rn and
l′ → r′ be rewrite rules w.l.o.g. whose variables are mutually disjoint. Suppose that l1, . . . , ln
parallel-overlap on l′ at parallel positions p1, . . . , pn and σ is the most general unifier of
{l1 ≈ l′/p1, . . . , ln ≈ l′/pn}. Then the term l′[l1, . . . , ln]p1,...,pnσ yields a parallel critical
pair 〈l′[r1, . . . , rn]p1,...,pn

σ, r′σ〉 obtained by the parallel-overlap of l1 → r1, . . . , ln → rn on
l′ → r′ at positions p1, . . . , pn. In the case of self-overlap (i.e. when n = 1 and l1 → r1
and l′ → r′ are identical modulo renaming), we do not consider the case p1 = ε. We write
〈l′[r1, . . . , rn]p1,...,pn

σ, r′σ〉X if X =
⋃

1≤i≤n V(l′σ/pi). We call the parallel critical pair outer
if n = 1 and p1 = ε, and inner if pi > ε for all i. The set of outer (inner) parallel critical pairs
obtained by the parallel-overlaps of rewrite rules from R1 on a rewrite rule from R2 is denoted
by PCPout(R1,R2) (PCPin(R1,R2), respectively). (Note, however, that PCPout(R1,R2) =
CPout(R1,R2).) We put PCP(R1,R2) = PCPout(R1,R2) ∪ PCPin(R1,R2).

Takahito Aoto and Yoshihito Toyama 97

I Lemma 3.8. Let P,S be TRSs such that S is left-linear and P is bidirectional. Suppose
that (i) for all 〈u, v〉X ∈ PCPin(P ∪ P−1,S), u ∗→S u′ ↔++ V,P v′

∗←S v for some u′, v′
and V satisfying

⋃
o∈V V(v′/o) ⊆ X, and (ii) CP(S,P ∪ P−1) ⊆ ∗→S ◦ ↔++P ◦

∗←S . Then
↔++P ◦→S ⊆

∗→S ◦↔++P ◦
∗←S .

Proof. Suppose t0 ←++ U,P∪P−1 s→q,S t1. Let U = {p1, . . . , pn} where p1, . . . , pn are positions
from left to right, s/pi = liσi for li → ri ∈ P ∪ P−1 and substitutions σi (1 ≤ i ≤ n) and
s/q = l′ρ for l′ → r′ ∈ S and substitution ρ. The same proof as in Lemma 3.5 applies other
than the case of ∀p ∈ U. p 6≤ q. Let {pk, . . . , pm} = {pi ∈ U | q ≤ pi}. For each pi (k ≤ i ≤ m)
either pi\q ∈ PosF (l′) or there exists qx ∈ PosV(l′) such that q.qx ≤ pi. W.l.o.g. let
{pk, . . . , pl} = {pi | pi\q ∈ PosF (l′)} and {pl+1, . . . , pm} = {pi | ∃qx ∈ PosV(l′). q.qx ≤ pi}.
Then there exists a parallel critical pair 〈u, v〉X obtained from overlaps of lk → rk, . . . , ll → rl

on l′ → r′ at pk\q, . . . , pl\q. Then, by our assumption u
∗→S u′ ↔++ V,P v′

∗←S v for some
u′, v′ satisfying

⋃
o∈V V(v′/o) ⊆ X. Let Y = V(l′σ) \ X. Then, since l′ is linear (and

V(l′),V(ll), . . . ,V(lm) are mutually disjoint), we have {l′(qx) | qx ∈ PosV(l′),∃i (q.qx ≤
pi)} ⊆ Y . Furthermore, t0/q = uθ′ and t1/q = vθ for some substitution θ, θ′ such that
θ(y) ∗→S θ′(y) for y ∈ Y and θ(z) = θ′(z) for z /∈ Y . Hence, by the left-linearity of S, we
have uθ′ ∗→S u′θ′. Now we claim that any position o1 ∈ PosY (v′) and o2 ∈ V are parallel.
Since Y ⊆ V, it suffices to show o2 6≤ o1. If o2 ≤ o1 then v′/o1 ∈ V(v′/o2) holds, and hence
V(v′/o2) ∩ Y 6= ∅. Then, by V(v′/o2) ⊆ X, X ∩ Y 6= ∅ holds. This is a contradiction. Hence
any position o1 ∈ PosY (u′) ∪ PosY (v′) and o2 ∈ V are parallel. Now, we have

t0 = s[r1σ1, . . . , uθ
′, . . . , rnσn]p1,...,q,...,pn

∗→S s[r1σ1, . . . , u
′θ′, . . . , rnσn]p1,...,q,...,pn

↔++ U ′,P s[l1σ1, . . . , v
′θ, . . . , lnσn]p1,...,q,...,pn

∗←S s[l1σ1, . . . , vθ, . . . , lnσn]p1,...,q,...,pn
= t1

where U ′ = {p1, . . . , pk−1} ∪ {pm+1, . . . , pn} ∪ {q.o | o ∈ V } ∪W where W is the set of
descendants of {ql+1, . . . , qm} in s along the rewrite steps s = s[l′θ]q →q,S t1 = s[vθ]q

∗→S
s[v′θ]q = s[l1σ1, . . . , v

′θ, . . . , lnσn]p1,...,q,...,pn
. Clearly, U ′ \W and U ′ \ {q.o | o ∈ V } are sets

of parallel positions. Thus it remains to show that positions from W are parallel to the
positions from {q.o | o ∈ V }. By the fact {l′(qx) | qx ∈ PosV(l′),∃i (q.qx ≤ pi)} ⊆ Y , for any
o1 ∈ W there exists oy ∈ PosY (v′) such that q.oy ≤ o1. Since any position oy ∈ PosY (v′)
and o2 ∈ V are parallel, any o1 ∈W and any q.o2 (o2 ∈ V) are parallel. J

I Theorem 3.9 (confluence criterion using parallel critical pairs). Let P,S be TRSs such that
S is left-linear and terminating and P is reversible. Suppose (i) CP(S,S) ⊆ ∗→S ◦↔++P ◦

∗←S ,
(ii) for all 〈u, v〉X ∈ PCPin(P ∪ P−1,S), u ∗→S u′ ↔++ V,P v′

∗←S v for some u′, v′ and V
satisfying

⋃
q∈V V(v′/q) ⊆ X and (iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦ ↔++P ◦

∗←S . Then S ∪ P is
confluent.

Proof. Similar to proof of the Theorem 3.7, using Lemmas 3.4, 3.8. J

Since, by the definition of parallel critical pairs, CPin(P ∪ P−1,S) ⊆ PCPin(P ∪ P−1,S)
holds. Thus the condition (ii) of Theorem 3.7 is a particular case of condition (ii) of
Theorem 3.9. Hence Theorem 3.7 is subsumed by Theorem 3.9.

I Example 3.10. Let

R =


(a) +(0, y) → y (b) +(s(x), y) → s(+(x, y))
(c) +(x, 0) → x (d) +(x, s(y)) → s(+(x, y))
(e) +(x, y) → +(y, x) (f) +(+(x, y), z) → +(x,+(y, z))

 .

RTA’11

98 A Reduction-Preserving Completion for Proving Confluence

Put S = {(a), (b), (c), (d)} and P = {(e), (f)}. Then S is linear and terminating. We have
+(x,+(y, z)) →P +(+(y, z), x) →P +(+(z, y), x) →P +(z,+(y, x)) →P +(z,+(x, y)) →P
+(+(x, y), z). Thus P is reversible. We have CP(S,S) =

〈0, 0〉 ∈ ∗←S 〈s(y), s(+(0, y))〉 ∈ ←S
〈s(+(x, 0)), s(x)〉 ∈ →S 〈s(x), s(+(x, 0))〉 ∈ ←S
〈s(+(0, y)), s(y)〉 ∈ →S 〈s(+(x, s(y))), s(+(s(x), y))〉 ∈ →S ◦←S
〈s(+(s(x), y)), s(+(x, s(y)))〉 ∈ →S ◦←S

 ,

CPin(P ∪ P−1,S) = ∅ and CP(S,P ∪ P−1) =

〈y,+(y, 0)〉 ∈ ←S 〈+(y, z),+(0,+(y, z))〉 ∈ ←S
〈+(y, z),+(+(0, y), z)〉 ∈ ←S 〈+(x, z),+(+(x, 0), z)〉 ∈ ←S
〈s(+(x, y)),+(y, s(x))〉 ∈ ↔P ◦←S
〈+(s(+(x, y)), z),+(s(x),+(y, z))〉 ∈ →S ◦↔P ◦←S
〈s(+(x,+(y, z))),+(+(s(x), y), z)〉 ∈ ↔P ◦

∗←S
〈+(x, s(+(y, z))),+(+(x, s(y)), z)〉 ∈ →S ◦↔P ◦

∗←S
〈x,+(0, x)〉 ∈ ←S 〈+(x, y),+(x,+(y, 0))〉 ∈ ←S
〈+(y, z),+(y,+(0, z))〉 ∈ ←S 〈+(x, y),+(+(x, y), 0)〉 ∈ ←S
〈s(+(x, y)),+(s(y), x)〉 ∈ ↔P ◦←S
〈s(+(+(x, y), z)),+(x,+(y, s(z)))〉 ∈ ↔P ◦

∗←S
〈+(s(+(x, y)), z),+(x,+(s(y), z))〉 ∈ →S ◦↔P ◦

∗←S
〈+(x, s(+(y, z))),+(+(x, y), s(z))〉 ∈ →S ◦↔P ◦←S



.

Thus one can apply Theorem 3.9 (or Theorem 3.7) to obtain the confluence of R = S ∪ P.
For the case the terminating TRS S is linear, one can obtain another confluence criterion

from the abstract confluence criterion using à0 :=↔P instead of à0 :=↔++P .
I Lemma 3.11. Let P,S be TRSs. Suppose CP(S,S) ⊆ ∗→S ◦

=↔P ◦
∗←S . Then ←S ◦→S ⊆

∗→S ◦
=↔P ◦

∗←S .

Proof. Take à :=↔P in Lemma 3.3. J

I Lemma 3.12. Let P,S be TRSs such that S is linear and P is bidirectional. Suppose
CP(S,P ∪ P−1) ∪ CP(P ∪ P−1,S) ⊆ ∗→S ◦

=↔P ◦
∗←S . Then =↔P ◦→S ⊆

∗→S ◦
=↔P ◦

∗←S .

Proof. In a similar way to the proof of Lemma 3.5. J

I Theorem 3.13 (confluence criterion for linear S). Let P,S be TRSs such that S is linear and
terminating and P is reversible. Suppose (i) CP(S,S) ⊆ ∗→S◦

=↔P◦
∗←S , (ii) CP(P∪P−1,S) ⊆

∗→S ◦
=↔P ◦

∗←S and (iii) CP(S,P ∪ P−1) ⊆ ∗→S ◦
=↔P ◦

∗←S . Then S ∪ P is confluent.

Proof. Similar to proof of the Theorem 3.7, using Lemmas 3.11, 3.12. J

The next examples show that Theorem 3.13 and Theorems 3.7/3.9 are incomparable
(Figure 1).
I Example 3.14. Let R be the one given in Example 3.10. Consider a TRS R1 = R ∪
{dbl(x)→ +(x, x)}. One can easily confirm that the confluence of R1 is shown in the same
way as R using Theorem 3.7. Since R1 is not linear, however, Theorem 3.13 does not
apply. Consider a TRS R2 = R ∪ {s(x) → s(s(x)), s(s(x)) → s(x)}. By putting S2 = S
and P2 = P ∪ {s(x) → s(s(x)), s(s(x)) → s(x)}, one can show the confluence of R2 using
Theorem 3.13. On the other hand, 〈+(s(s(x)), y), s(+(x, y))〉{x} ∈ PCPin(P ∪ P−1,S) and
thus the condition of Theorem 3.9 is not satisfied. Theorem 3.9 does not apply to other
partitions of R2 either. Thus one can not show the confluence of R2 using Theorem 3.9.

Takahito Aoto and Yoshihito Toyama 99

• R1

Thm. 3.7

Thm. 3.9 Thm. 3.13

• R2

Figure 1 Relation of three confluence criterion

4 Reduction-preserving completion

There are cases where our confluence criteria can be applicable indirectly. The idea is to
construct a TRS suitable for applying our theorems by exchanging or adding rewrite rules
without changing the equivalence of the reduction so that the confluence of the transformed
TRS implies that of the original TRS. Using the reversibility of P , there are several flexibilities
on such transformations. The notion of reduction equivalence and following properties of
reduction equivalence are well-known in literature and the latter are easily proved.

I Definition 4.1 (reduction equivalence). Two relation →0 and →1 are said to be reduction
equivalent if ∗→0 = ∗→1. Two TRSs R and R′ are reduction equivalent if so are →R and
→R′ .

I Proposition 4.2 (properties of reduction equivalence). (i) If →R ⊆
∗→R′ and →R′ ⊆

∗→R
then R and R′ are reduction equivalent. (ii) If R and R′ are reduction equivalent then the
confluence of R and R′ coincide.

We now demonstrate how the confluence criteria in the previous section can be applied
indirectly using the notion of reduction equivalence.

I Example 4.3 (confluence by reduction equivalence). Let (a)–(f) be rewrite rules given
in Example 3.10. We show the confluence of R = {(a), (b), (e), (f)}. Theorems 3.9 and
3.13 can not be applied directly to prove this—for example, if we put S = {(a), (b)}
and P = {(e), (f)}, then we have 〈y,+(y, 0)〉 ∈ CP(S,P ∪ P−1) which is not joinable by
∗→S ◦ ↔++P ◦

∗←S . Let R′ = R ∪ {(c), (d)}. Then since we have +(x, 0) →P +(0, x) →S x
and +(x, s(y))→P +(s(y), x)→S s(+(y, x)→P s(+(x, y)), the inclusions→R ⊆ →R′ ⊆

∗→R
hold. Hence R and R′ are reduction equivalent by Proposition 4.2 (i). As we have shown in
Example 3.10, R′ is confluent. Thus by Proposition 4.2 (ii), R is confluent either.

In this example, two additional rewrite rules (c) and (d) are given by hand. But
in automated confluence proving procedures, one needs to find such new rewrite rules
automatically. We next present a completion-like procedure to automate such additions (or
more generally transformations) of rewrite rules. We first present an abstract version of the
procedure in the form of inference rules and prove its soundness w.r.t. the confluence proof.

I Definition 4.4 (abstract reduction-preserving completion procedure). Inference rules of an
abstract reduction-preserving completion procedure are listed in Figure 2. The inference rules
act on a pair of TRSs. One step derivation using any of inference rules (from upper to lower)
is denoted by ;. We also write ;p (;r,;a) for an inference step by the rule Partition
(Replacement, Addition, respectively).

RTA’11

100 A Reduction-Preserving Completion for Proving Confluence

Partition 〈S,P〉
〈S ′,P ′〉 S ∪ P = S ′ ∪ P ′, P ′: reversible

Replacement 〈S ∪ {l→ r},P〉
〈S ∪ {l→ r′},P〉 r

∗↔P r′

Addition 〈S,P〉
〈S ∪ {l→ r},P〉 l

∗↔P ◦
∗→S r

Figure 2 Inference rules of reduction-preserving completion

I Theorem 4.5 (soundness of the abstract reduction-preserving completion procedure). Let
〈R, ∅〉 = 〈S0,P0〉

∗
; 〈Sn,Pn〉 be a derivation of abstract reduction-preserving completion

procedure. Suppose that Sn,Pn satisfy the conditions of Theorem 3.9 or Theorem 3.13. Then
R is confluent.

Proof. We show, for any inference step 〈Si,Pi〉; 〈Si+1,Pi+1〉, that Si ∪Pi and Si+1 ∪Pi+1
are reduction equivalent and that Pi+1 is reversible whenever so is Pi.

Case 〈Si,Pi〉; 〈Si+1,Pi+1〉 by Partition. Then since Si ∪ Pi = Si+1 ∪ Pi+1 and Pi+1 is
reversible by the side condition, the claim follows immediately.
Case 〈Si,Pi〉 ; 〈Si+1,Pi+1〉 by Replacement. Then Si = S ′i ∪ {l → r}, r ∗↔Pi

r′ and
Si+1 = S ′i ∪ {l → r′} for some S ′i, l, r, r′ and Pi+1 = Pi. By the reversiblity of Pi, we
have l→Si

r
∗→Pi

r′ hence →Si+1∪Pi+1 ⊆
∗→Si∪Pi

. By the reversiblity of Pi, we also have
l→Si+1 r

′ ∗→Pi
r, hence →Si∪Pi

⊆ ∗→Si+1∪Pi+1 . Thus by Proposition 4.2 (i), Si ∪ Pi and
Si+1 ∪ Pi+1 are reduction equivalent. Hence, by Pi+1 = Pi, the claim follows.
Case 〈Si,Pi〉; 〈Si+1,Pi+1〉 by Addition. Then l

∗↔Pi
◦ ∗→Si

r and Si+1 = Si∪{l→ r} for
some l, r and and Pi+1 = Pi. Since Si∪Pi ⊆ Si+1∪Pi+1, we have→Si∪Pi ⊆

∗→Si+1∪Pi+1 .
By the reversiblity of Pi, l

∗→Pi
◦ ∗→Si

r′. Hence →Si+1∪Pi+1 ⊆
∗→Si∪Pi

. Thus by
Proposition 4.2 (i), Si∪Pi and Si+1∪Pi+1 are reduction equivalent. Hence, by Pi+1 = Pi,
the claim follows.

Thus by induction on n, it follows that R and Sn ∪ Pn are reduction equivalent. By
Theorem 3.9 or 3.13, Sn ∪ Pn is confluent, and hence R is confluent by Proposition 4.2
(ii). J

I Example 4.6 (derivations in abstract reduction-preserving completion procedure). The conflu-
ence proof of Example 4.3 is derived by the abstract reduction-preserving completion proced-
ure. Let rewrite rules (a)–(f) be those given in Example 3.10. Give R = {(a), (b), (e), (f)}
as the input to the procedure. Let us consider the following derivation.

〈S0,P0〉 = 〈{(a), (b), (e), (f)}, ∅〉 ;p 〈{(a), (b)}, {(e), (f)}〉 = 〈S1,P1〉
;a 〈{(a), (b), (c)}, {(e), (f)}〉 = 〈S2,P2〉
;a 〈{(a), (b), (c), (d′)}, {(e), (f)}〉 = 〈S3,P3〉
;r 〈{(a), (b), (c), (d)}, {(e), (f)}〉 = 〈S4,P4〉

where (d′) : +(x, s(y))→ s(+(y, x)). Then S4 = {(a), (b), (c), (d)} and P4 = {(e), (f)} satisfy
the conditions of Theorem 3.7. Thus, by Theorem 4.5, R is confluent.

Takahito Aoto and Yoshihito Toyama 101

Next we present a concrete reduction-preserving completion procedure that can be used as
the basis of an automated completion procedure. The procedure presented below is designed
so as to apply Theorem 3.7, but it is straightforward to modify the procedure suitable for
Theorem 3.9 and/or Theorem 3.13.

I Definition 4.7 (concrete reduction-preserving completion procedure).

Input: a TRS R
Output: Success or Failure (or may diverge)

Step 1. Put R0 := R and i := 0. Proceed to Step 2.
Step 2. Take a partition Si ∪ Pi = Ri such that Si is left-linear and terminating, Pi is
reversible and CPin(Pi ∪ Pi

−1,Si) = ∅. Proceed to Step 3. If there is no such a partition
then return Failure.

Step 3. Set U := ∅. For each 〈u, v〉 ∈ CP(Si,Pi ∪ Pi
−1), take Si-normal forms û, v̂ of u, v,

respectively and check whether û ↔++Pi
v̂. If not û ↔++Pi

v̂ then put U := U ∪ {v → û}.
Finally if U = ∅ then proceed to Step 4. Otherwise take some non-empty U ′ ⊆ U and put
Ri+1 := Ri ∪ U ′, i := i+ 1 and go to Step 2.

Step 4. Set U := ∅. For each 〈u, v〉 ∈ CP(Si,Si), take Si-normal forms û, v̂ of u, v,
respectively and check whether û ↔++Pi

v̂. If not û ↔++Pi
v̂ then put U := U ∪ {û ≈ v̂}.

Finally if U = ∅ then return Success. Otherwise take some set U ′ ⊆ (U ∪ U−1) ∩ ∗↔Pi
of

rewrite rules and put Ri+1 := Ri ∪ U ′, i := i+ 1 and go to Step 2.

During the step 2, one may perform the following additional steps.

Step 2a. If there exist l → r ∈ Si and r′ such that r ↔Pi r
′ and CPin(Pi ∪ Pi

−1, {l →
r}) 6= ∅, then put Ri+1 := (Ri \ {l→ r}) ∪ {l→ r′}, i := i+ 1.

Step 2b. Let 〈u, v〉 ∈ CPin(Pi ∪ Pi
−1,Si) and let v̂ be Si-normal form of v. Then put

Ri+1 := Ri ∪ {u→ v̂} and i := i+ 1.

Before moving from the step 3 to the step 2, one may perform the following additional step.

Step 3a. Set Si := Si−1,Pi := Pi−1. If there exist l → r ∈ Si and r′ such that r ↔Pi r
′

and there exists 〈u, v〉 ∈ CP({l→ r},Pi ∪ Pi
−1) such that û↔++Pi

v̂ does not hold where
û, v̂ are Si-normal forms of u, v, respectively, then put Ri+1 := (Ri \ {l→ r})∪ {l→ r′},
i := i+ 1.

Before moving from the step 4 to the step 2, one may perform the following additional step.

Step 4a. Set Si := Si−1,Pi := Pi−1. If there exist l → r ∈ Si and r′ such that r ↔Pi
r′

and there exists 〈u, v〉 ∈ CP({l→ r},Si) ∪ CP(Si, {l→ r}) such that û↔++Pi v̂ does not
hold where û, v̂ are Si-normal forms of u, v, respectively, then put Ri+1 := (Ri \ {l →
r}) ∪ {l→ r′}, i := i+ 1.

I Corollary 4.8 (soundness of the concrete reduction-preserving completion procedure). If the
procedure of Definition 4.7 succeeds for the input R, then R is confluent.

Proof. It suffices to show if the procedure succeeds then there exists a successful derivation
of the abstract reduction-preserving completion procedure. Step 1 corresponds to the
empty derivation. Step 2 corresponds to an inference step by Partition. For any 〈u, v〉 ∈
CP(Si,Pi ∪ Pi

−1), we have u ←Si
◦ ↔Pi

v, and hence v ↔Pi
◦ ∗→Si

û. Thus, Step 3 is
simulated by multiple inference steps by Addition. Similarly, Steps 4 and 2b are simulated
by multiple inference steps by Addition. Steps 2a, 3a, 4a are simulated by inference steps by
Replace. J

RTA’11

102 A Reduction-Preserving Completion for Proving Confluence

I Example 4.9. Let

R =
{

(a) +(0, y) → y (b) +(x, s(y)) → s(+(x, y))
(c) +(x, y) → +(y, x) (d) +(+(x, y), z) → +(x,+(y, z))

}
1. (Step 1) We put R0 := {(a), (b), (c), (d)}.
2. (Step 2) We take S0 = {(a), (b)} and P0 = {(c), (d)}. Then S0 is left-linear and

terminating, P0 is reversible and CPin(P0 ∪ P0
−1,S0) = ∅.

3. (Step 3) We have CP(S0,P0 ∪ P0
−1) =

(1) 〈+(y, z),+(0,+(y, z))〉 (5) 〈s(+(+(x, z), y)),+(x,+(z, s(y)))〉
(2) 〈+(y, z),+(+(0, y), z)〉 (6) 〈+(s(+(x, y)), z),+(x,+(s(y), z))〉
(3) 〈+(x, y),+(+(x, 0), y)〉 (7) 〈+(z, s(+(x, y))),+(+(z, x), s(y))〉
(4) 〈y,+(y, 0)〉 (8) 〈s(+(x, y)),+(s(y), x)〉

 .

Then for 〈u, v〉 ∈ {(3), (4), (6), (8)}, S0-normal forms of u, v are not joinable by a ↔++P0-
step. Put R1 := R0 ∪ U ′ =

R0 ∪
{

(e) +(y, 0)→ y (f) +(s(y), x)→ s(+(x, y))
}
.

and go to the step 2.
4. (Step 2) We take S1 = {(a), (b), (e), (f)} and P1 = {(c), (d)}. Then S1 is left-linear and

terminating, P1 is reversible, and CPin(P1 ∪ P1
−1,S1) = ∅.

5. (Step 3) There are four elements including (9) 〈+(s(+(x, y)), z),+(x,+(s(y), z))〉 in
CP(S1,P1 ∪ P1

−1) whose S1-normal forms are not joinable by a ↔++P1 -step. Here we put
U ′ := ∅, R2 := R1, i := 2 and proceed to Step 3a.

6. (Step 3a) Since (9) ∈ CP({(f)},P1 ∪ P1
−1) and s(+(x, y)) →P2 s(+(y, x)). Hence put

R3 := (R2 \ {(f)}) ∪
{

(g) +(s(y), x)→ s(+(y, x))
}
and i := 3 and go to Step 2.

7. (Step 2) We take S3 = {(a), (b), (e), (g)} and P3 = {(c), (d)}. Then S3 is left-linear and
terminating, P3 is reversible and CPin(P3 ∪ P3

−1,S3) = ∅. Thus proceed to Step 3.
8. (Step 3) For any 〈u, v〉 ∈ CP(S3,P3 ∪ P3

−1), S3-normal forms of u, v are joinable by a
↔++P3-step (Example 3.10). Hence proceed to Step 4.

9. (Step 4) For any 〈u, v〉 ∈ CP(S3,S3), S3-normal forms of u, v are joinable by a ↔++P3 -step
(Example 3.10). Thus Success is returned.

5 Implementation and experiments

All results of this paper have been implemented. The program is written in SML/NJ1 and is
built upon confluence prover ACP2 [1, 2, 21].

In Figure 3, we present a pseudo-code of main function of our implementation of reduction-
preserving completion procedure enough for describing some heuristics employed in the
implementation. A short description of functions involved in our pseudo-code and heuristics
employed follows.

(checkConfluence R) is the main function of the procedure. It simulates multiple runs
in the breadth-first strategy.

Let D = {l(ε) | l→ r ∈ R} and C = F \ C.

1 http://www.smlnj.org/
2 http://www.nue.riec.tohoku.ac.jp/tools/acp/

Takahito Aoto and Yoshihito Toyama 103

fun check (S,P,i) = if i = 0 then (apply Theorem 3.9)
else (apply Theorem 3.13)

fun checkConfluence R =
let fun step [] = Failure

| step ((S,P,i)::rest) = case check (S,P,i) of
NONE⇒ step rest

| SOME ([],[])⇒ Succeess
| SOME nj⇒ step (rest @

(mapAppend decompose (trans (S,P) nj)))
in step (decompose R) end

Figure 3 Pseudo-code of the main function

(decompose R) decomposes R into S ∪ P and duplicates S ∪ P. Hence a list of triples
(S,P, i) where S ∪ P = R and i ∈ {0, 1} are returned. Here, however, not all partitions
but only one partition of R are returned based on a heuristic, namely that P is the set
of the rules l → r satisfying either (1) r → l ∈ R or (1′) F(l) = F(r) ⊆ D and (2′)
l(ε), r(ε) ∈ D implies l(ε) = r(ε).
(check (S,P, i)) checks whether conditions of Theorem 3.9 (or Theorem 3.13) are satisfied.
If S is not left-linear or it fails to prove termination of S or reversibility of P, then
NONE is returned. Reversibility is tested by checking r

≤k→ l for some constant k (in
our implementation, we set k = 10). If all conditions other than the critical pairs
conditions are satisfied then non-joinable critical pairs and rewrite rules generating
such critical pairs are returned in the form SOME (U1, U2). For example, in the case
of i = 0, from CP(S,S) the list U1 =

⋃
l→r,l′→r′∈S{〈l → r, l′ → r′, u, v〉 | 〈u, v〉 ∈

CP({l → r}, {l′ → r′}) \ ∗→S ◦ ↔++P ◦
∗←S} is returned. Similarly U2 is obtained from

PCPin(P ∪P−1,S)∪CP(S,P ∪P−1). If both of these lists are empty then the conditions
of Theorem 3.9 (or Theorem 3.13) are satisfied and thus the procedure succeeds (Success
is returned).
(trans (S,P) (U1, U2)) returns a collection of transformed TRSs obtained by addition
and replacement of rewrite rules constructed from non-joinable critical pairs and rewrite
rules generating such critical pairs as described in the Definition 4.7. Here, the addition
of rewrite rules are restricted based on the following heuristic: l → r is added if (1)
l ∈ NF(S), (2) l(ε) = r(ε) ∈ D implies (F(l) ∪ F(r)) ∩ C = ∅ and (3) l(ε) 6= r(ε) and
l(ε), r(ε) ∈ D imply F(r) ∩ C = ∅.

Table 1 shows the summary of our experiments. We have tested various combinations
of our results: (1)–(4) are proofs by confluence criterion of Theorem 3.7, of Theorem 3.9,
of Theorem 3.13 and by the combination of those of Theorem 3.9 and Theorem 3.13. (5)–
(7) are proofs by the reduction-preserving completion without the Replacement rule, i.e.
without the Steps 2a, 3a, 4a of the concrete reduction-preserving completion (Definition 4.7).
(8)–(10) are proofs by the reduction-preserving completion with the Replacement rule. For
the experiments, we used a collection of 81 TRSs involving non-terminating rules such as
commutativity and associativity rules which have been developed in the course of experiments.
All experiments have been performed on a FreeBSD platform of a PC equipped with 1.2GHz
CPU and 1GB memory. We set the timout 60 sec. Total time is indicated in millisecond.

RTA’11

104 A Reduction-Preserving Completion for Proving Confluence

Table 1 Summary of experiments

success failure diverge timeout time(msec.)
(1)main (Theorem 3.7) 19 62 0 0 1308
(2) PCP (Theorem 3.9) 28 53 0 0 1318
(3) linear (Theorem 3.13) 27 54 0 0 901
(4) PCP&linear 29 52 0 0 1725
(5) completion (PCP) 50 31 0 0 2258
(6) completion (linear) 46 35 0 0 1451
(7) completion (PCP&linear) 51 30 0 0 2995
(8) completion (repl., PCP) 64 17 (3) 0 3773
(9) completion (repl., linear) 59 22 0 0 2146

(10) completion (repl., PCP&linear) 66 15 (2) 0 4885
ACP [1, 2, 21] 12 67 — 2 164943

The maximal steps of the completion procedure is limited to 20 steps; the columns below the
title “diverge” show the numbers of examples which exceed this limit, where these numbers
are included in those of “failure.”

The applicability of our incomparable confluent criteria (Theorem 3.9 and Theorem
3.13) does not have much differences. The applicability of Theorem 3.7, which is subsumed
by Theorem 3.9, is limited compared to these two criteria. There is a clear advantage
of using the completion procedure. The introducton of the Replacement inference rule
also makes clear difference. The increase of total time by the introduction of completion
procedure based on a confluence criterion are within 3 times of total time required in
proving confluence only by checking that confluence criterion. This is partly due to our
heuristics and the limitation on the number of limit of completion steps. The number of
successful examples, however, does not change in the case we increase that limit to 100 steps.
The collection of examples and all details of the experiments are available on the webpage
http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/rta11/all.html.

We have also tested the confluence prover ACP on our collection. ACP is an automated
confluence prover in which divide–and–conquer approach based on the persistent, layer-
preserving, commutative decompositions is employed and involving many confluence criteria
[4, 6, 10, 11, 14, 16, 17, 12, 19] as well as the decreasing diagram techniques [18, 20]. As
shown in the table, most of our examples are not coped with the confluence prover ACP.

We have also tested on the 71 examples containing associativity and commutativity rules
selected from the termination problem database 8.03 which have been developed to test
termination modulo AC or C. ACP succeeded at 30 examples among which 27 examples are
proved as non-confluent and 3 examples are proved as confluent. By our methods, 7 examples
have been proved as confluent. We have also tested on a collection of 106 examples from
[2, 1]. By enhancing ACP by our methods, confluence proving succeeded at 3 more examples.

6 Conclusion

We have presented a method for proving confluence of TRSs which can be applied even if the
TRSs contain non-terminating rules such as commutativity and associativity. We have given

3 http://www.termination-portal.org

Takahito Aoto and Yoshihito Toyama 105

confluence criteria for TRSs that can be partitioned into terminating part and reversible
part which may be non-terminating. Then we have given a reduction-preserving completion
procedure so that the criteria can be applied indirectly. In contrast to the well-known method
for proving confluence of equational TRSs [7], our method is based solely on usual critical
pairs and usual termination and hence easily integrated into confluence provers based on
other confluence proving methods for TRSs. We have implemented the proposed techniques
and reported experimental results. It turns out that our method is effective for TRSs for
which most of standards methods for proving confluence of TRSs are not effective.

The following examples show that our method and the methods of [6, 7] are incomparable.

I Example 6.1. Let

R =


+(x, 0) →x

+(x, s(y)) → s(+(x, y))
∗(x, 0) → 0
∗(x, s(y)) →+(∗(x, y), x)
∗(x,+(y, z))→+(∗(x, y), ∗(x, z))

 and E =


+(x, y) ↔+(y, x)
+(+(x, y), z)↔+(x,+(y, z))
∗(x, y) ↔∗(y, x)
∗(∗(x, y), z) ↔∗(x, ∗(y, z))

 .

It can be shown by the method of [7] that R is confluent modulo E and hence R ∪ E is
confluent. Our method, however, failed to prove this example. Let

R′ =
{
∗(+(x, y), z)→+(∗(x, z), ∗(y, z))

}
and E ′ =

{
+(x, y) ↔+(y, x)
+(+(x, y), z)↔+(x,+(y, z))

}
.

It can be shown by the method of [6] that R′ is confluent modulo E ′ and hence R′ ∪ E ′ is
confluent. Our method, however, failed to prove this example. Let

R′′ =
{

f(0, 0)→ f(0, 1)
f(1, 0)→ f(0, 0)

}
and E ′′ =

{
f(x, y)↔ f(y, x)

}
.

It can be shown by our method that R′′ ∪ E ′′ is confluent. Because R′′ is not terminating
modulo E ′′, the methods of [6, 7] fail to prove this example. We also note that the method
of [8] also fails to prove this example by the same reason.

Acknowledgment

Thanks are due to Junichi Mitimata for discussions and experiments on preliminary results
of this paper. The authors are grateful for Harald Zankl, Aart Middeldorp and anonymous
referees for pointers to related works and helpful comments. This work was partially supported
by grants from JSPS Nos. 20500002 and 22500002.

References
1 T. Aoto. Automated confluence proof by decreasing diagrams based on rule-labelling. In

Proc. of RTA 2010, volume 6 of LIPIcs, pages 7–16. Schloss Dagstuhl, 2010.
2 T. Aoto, Y. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems auto-

matically. In Proc. of RTA 2009, volume 5595 of LNCS, pages 93–102. Springer-Verlag,
2009.

3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

4 H. Gomi, M. Oyamaguchi, and Y. Ohta. On the Church-Rosser property of root-E-
overlapping and strongly depth-preserving term rewriting systems. Transactions of IPSJ,
39(4):992–1005, 1998.

RTA’11

106 A Reduction-Preserving Completion for Proving Confluence

5 B. Gramlich. Confluence without termination via parallel critical pairs. In Proc. of
CAAP’96, volume 1996 of LNCS, pages 211–225. Springer-Verlag, 2006.

6 G. Huet. Confluent reductions: abstract properties and applications to term rewriting
systems. Journal of the ACM, 27(4):797–821, 1980.

7 J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations.
SIAM Journal of Computing, 15(4):1155–1194, 1986.

8 J.-P. Jouannaud and M. Munoz. Termination of a set of rules modulo a set of equations.
In Proc. of CADE-7, volume 170 of LNCS, pages 175–193. Springer-Verlag, 1984.

9 E. Ohlebusch. Church-Rosser theorems for abstract reduction modulo an equivalence rela-
tion. In Proc. of RTA-98, volume 1379 of LNCS, pages 17–31. Springer-Verlag, 1998.

10 S. Okui. Simultaneous critical pairs and Church-Rosser property. In Proc. of RTA-98,
volume 1379 of LNCS, pages 2–16. Springer-Verlag, 1998.

11 M. Oyamaguchi and Y. Ohta. A new parallel closed condition for Church-Rosser of left-
linear TRS’s. In Proc. of RTA-97, volume 1232 of LNCS, pages 187–201. Springer-Verlag,
1997.

12 M. Oyamaguchi and Y. Ohta. On the open problems concerning Church-Rosser of left-
linear term rewriting systems. IEICE Trans. Information and Systems, E87-D(2):290–298,
2004.

13 G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational theories.
Journal of the ACM, 28(2):233–264, 1981.

14 Y. Toyama. On the Church-Rosser property of term rewriting systems. Technical Report
17672, NTT ECL, 1981. In Japanese.

15 Y. Toyama. Confluent term rewriting systems (invited talk). In Proc. of RTA
2005, volume 3467 of LNCS, page 1. Springer-Verlag, 2005. Slides are available from
http://www.nue.riec.tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf.

16 Y. Toyama and M. Oyamaguchi. Church-Rosser property and unique normal form property
of non-duplicting term rewriting systems. In Proc. of CTRS-94, volume 968 of LNCS, pages
316–331. Springer-Verlag, 1994.

17 Y. Toyama and M. Oyamaguchi. Conditional linearization of non-duplicating term rewriting
systems. IEICE Trans. Information and Systems, E84-D(5):439–447, 2001.

18 V. van Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259–280, 1994.

19 V. van Oostrom. Developing developments. Theoretical Computer Science, 175(1):159–181,
1997.

20 V. van Oostrom. Confluence by decreasing diagrams: converted. In Proc. of RTA 2008,
volume 5117 of LNCS, pages 306–320. Springer-Verlag, 2008.

21 J. Yoshida, T. Aoto, and Y. Toyama. Automating confluence check of term rewriting
systems. Computer Software, 26(2):76–92, 2009. In Japanese.

	Introduction
	Preliminaries
	Confluence criteria
	Reduction-preserving completion
	Implementation and experiments
	Conclusion

