
Argument Filterings and Usable Rules for

Simply Typed Dependency Pairs?

Takahito Aoto1 and Toshiyuki Yamada2

1 Research Institute of Electrical Communication, Tohoku University, Japan
aoto@nue.riec.tohoku.ac.jp

2 Graduate School of Engineering, Mie University, Japan
toshi@cs.info.mie-u.ac.jp

Abstract. Simply typed term rewriting (Yamada, 2001) is a framework
of higher-order term rewriting without bound variables based on Lisp-
like syntax. The dependency pair method for the framework has been
obtained by extending the first-order dependency pair method and sub-
term criterion in (Aoto & Yamada, 2005). In this paper, we incorporate
termination criteria using reduction pairs and related refinements into
the simply typed dependency pair framework using recursive path order-
ings for S-expression rewriting systems (Toyama, 2008). In particular, we
incorporate the usable rules criterion with respect to argument filterings,
which is a key ingredient to prove the termination in a modular way. The
proposed technique has been implemented in a termination prover and
an experimental result is reported.

1 Introduction

Simply typed term rewriting [22] is a framework of higher-order term rewriting
without bound variables based on Lisp-like syntax (e.g. (map F (cons 0 nil)))
equipped with simple types (e.g. map : (N → N) × L → L). Its untyped version
has been called S-expression rewriting in [19]. To integrate these names, we refer
to our framework as simply typed S-expression rewriting in this paper. Termi-
nation proof techniques for the (simply typed) S-expression rewriting system
((ST)SRS, for short) have been investigated in [1, 3, 19, 20, 22].

The dependency pair method [5] is a powerful termination proof technique
for first-order term rewriting systems which virtually all modern termination
provers are based on. The authors incorporated the dependency pair framework
to the STSRSs in [3], which gave a characterization of minimal non-terminating
simply typed S-expressions and extended the notions of dependency pairs and
(estimated) dependency graphs into the simply typed framework. They also ex-
tended the subterm criterion [10] of first-order dependency pairs and introduced
the head instantiation technique to make the simply typed dependency pair
method effective even in the presence of function variables.

? An extended abstract [4] of a preliminary version of this paper has been appeared
in the proceedings of HOR 2007.

In this paper, we incorporate termination criteria using reduction pairs and
related refinements into the simply typed dependency pair framework. For this,
we use the recursive path ordering for S-expression rewriting systems [19, 20]. We
extend the notions of argument filterings [5] and usable rules [10, 9] to the case
of the simply typed framework. In particular, we incorporate the usable rules
criterion with respect to argument filterings, which is a key ingredient to prove
termination in a modular way. The proposed technique has been implemented
in a termination prover and an experimental result is reported.

Related works and the contribution of the paper. Dependency pair methods for
another similar framework of binder-free simply typed term rewriting based on
ML-like syntax (the applicative style simply typed framework) have been studied
by Kusakari, Sakai and others [13–17]. Although there are subtle differences be-
tween our approach and theirs, the main contributions of the paper and relations
with results in [13–17] are summarized as follows.

– Argument filtering in the simply typed setting based on the stability condi-
tion: Argument filtering has been incorporated to the simply typed setting
in the applicative style by Kusakari [13]. However, his method has some lim-
itations that selective filtering for higher-order variables and rewrite rules
of higher-order types are not considered. Extensions for such cases are not
straightforward as the naive extension makes the technique unsound. This
paper solves these issues by introducing a stability condition.

– Simply typed usable rules with respect to argument filterings: Usable rules
without argument filterings [10] have been incorporated to simply typed set-
ting in our preliminary version [4]. This paper also incorporates usable rules
with respect to argument filterings [9]. Meanwhile, for the applicative style
simply typed framework, usable rules without argument filterings appeared
in [17] and very recently the ones with respect to argument filterings ap-
peared in [16]. Unlike usable rules in [16, 17], our usable rules need not to be
closed with an (unusual) extra propagation rule.

– Implementation in a termination prover and experiments: In contrast to the
termination proving in first-order term rewriting, few implementation of a
termination prover are known for the higher-order setting. An implementa-
tion of extensions presented in the preceding clauses in a termination prover
is reported for the first time in this paper.

2 Preliminaries

In this section, we briefly recall the terminology and the notations of simply
typed S-expression rewriting (simply typed term rewriting in [22]).

A simple type is either the base type o or a function type τ1×· · ·×τn → τ0. The
set of all simple types is denoted by ST. For the sake of simplicity, we consider
only a single base type, although all the results in this paper can be extended
to the case of multiple base types. The sets of constants and variables of type τ

are denoted by Στ and V τ , while the sets of all constants and all variables are
denoted by Σ and V . The set S(Σ, V)τ of simply typed S-expressions of type τ
is defined as follows: (i) Στ ∪V τ ⊆ S(Σ, V)τ , (ii) if t0 ∈ S(Σ, V)τ1×···×τn→τ and
ti ∈ S(Σ, V)τi for all i ∈ {1, . . . , n} then (t0 t1 · · · tn) ∈ S(Σ, V)τ . The set of
all simply typed S-expressions is denoted by S(Σ, V)ST. The type of a simply
typed S-expression t is denoted by type(t). By dropping type information, we
obtain the set S(Σ, V) of untyped S-expressions. We call a simply typed/untyped
S-expression just an S-expression when we do not care whether it is simply typed
or not. The set of variables in an S-expression t is denoted by V(t). The head
symbol of an S-expression is defined as follows: head(a) = a for a ∈ Σ ∪ V ;
head((t0 t1 · · · tn)) = head(t0).

A simply typed context of type τ is a simply typed S-expression that contains
one special symbol �τ , called the hole, of type τ . The simply typed S-expression
obtained by replacing the hole in a simply typed context C of type τ with a
simply typed S-expression t of the same type τ is denoted by C[t]. A context
of the form �τ is said to be empty. We omit the type of a hole when it is not
important. The notion of context for untyped S-expressions is defined similarly.
An S-expression s is a subexpression of an S-expression t (denoted by s E t)
if C[s] = t for some context C, and is a proper subexpression (denoted by
s C t) when s 6= t holds in addition. A simply typed substitution is a mapping
σ : V → S(Σ, V)ST such that type(x) = type(σ(x)) for all x ∈ V . An instance
of a simply typed S-expression t is written as tσ. The notion of substitution for
untyped S-expressions is defined similarly.

Every simply typed rewrite rule l → r must satisfy the following conditions:
(1) type(l) = type(r), (2) head(l) ∈ Σ, and (3) V(r) ⊆ V(l). Let R = 〈Σ,R 〉
be a simply typed S-expression rewriting system (STSRS, for short). The set Σd

of defined symbols of R is defined by Σd = {head(l) | l → r ∈ R}. For untyped
rewrite rule l → r, we omit the conditions (1) and (2) and impose (2′) l /∈ V
[19, 20]. An S-expression rewriting system (SRS, for short) is a pair R = 〈Σ,R 〉
where Σ is a set of untyped constants and R is a set of untyped rewrite rules.
The rewrite relation induced by (ST)SRS R is denoted by →R; its reflexive
closure, transitive closure, and reflexive transitive closure are denoted by →=

R,
→+

R, and →∗
R, respectively.

The root rewrite step
r
→R is defined as s

r
→R t if s = lσ and t = rσ for

some rewrite rule l → r and some substitution σ. The head rewrite step
h
→R is

defined recursively as follows: s
h
→R t if (1) s

r
→R t or (2) s = (s0 u1 · · · un),

t = (t0 u1 · · · un), and s0
h
→R t0. The non-head rewrite step is defined by

nh
→R = →R \

h
→R. An argument context is a context whose head symbol is the

hole, more precisely, κ is an argument context of type τ if (1) κ = �τ , or (2)
κ = (κ′ t1 · · · tn) for some argument context κ′ of a function type and some

S-expressions t1, . . . , tn of appropriate types. Then s
h
→R t holds if and only if

there exist a rewrite rule l → r, a substitution σ, and an argument context κ
such that s = κ[lσ] and t = κ[rσ].

Example 1 (simply typed S-expression rewriting). Let R = 〈Σ,R 〉 be an STSRS

where Σ = { 0o, so→o, +o→o→o, []
o
, : o×o→o, fold(o→o→o)×o→o→o, sumo→o

}, and R =

((+ 0) y) → y ((+ (s x)) y) → (s ((+ x) y))
((fold F x) []) → x ((fold F x) (: y ys)) → ((F y) ((fold F x) ys))
sum → (fold + 0)

.

An example of rewrite sequence is (sum (: (s 0) [])) →R ((fold + 0) (: (s 0) []))
→R ((+ (s 0)) ((fold + 0) [])) →R ((+ (s 0)) 0) →R (s ((+ 0) 0)) →R (s 0).

The definition of simply typed dependency pairs is given as follows.

Definition 1 (dependency pairs [3]). A simply typed dependency pair (un-
typed dependency pair) is a pair of simply typed (resp. untyped) S-expressions.
The set DP(R) of all dependency pairs of an STSRS R = 〈Σ,R 〉 is the set of
simply typed dependency pairs defined as follows:

DP(R) = {〈l , r′〉 | l → r ∈ R, r′ E r, r′ 6C l, head(r′) ∈ Σd ∪ V }
∪ {〈l′, r′〉 ∈ Exp(l → r) | l → r ∈ R, head(r) ∈ Σd ∪ V }

where the argument expansion Exp(l → r) is defined as follows: if l → r is of
base type then Exp(l → r) = ∅, otherwise Exp(l → r) = {l′ → r′}∪Exp(l′ → r′)
where l′ = (l x1 · · · xn), r′ = (r x1 · · · xn), and x1, . . . , xn are distinct fresh
variables of appropriate types. A (simply typed or untyped) dependency pair
〈l, r〉 is also written as l � r.

Example 2 (dependency pairs). Let R be an STSRS in Example 1. Then DP(R) =

((+ (s x)) y) � ((+ x) y) sum � (fold + 0)
((+ (s x)) y) � (+ x) sum � fold

((fold F x) (: y ys)) � ((F y) ((fold F x) ys))
((fold F x) (: y ys)) � (F y) sum � +
((fold F x) (: y ys)) � ((fold F x) ys) (sum xs) � ((fold + 0) xs)

.

In the simply typed framework, a root rewrite step using a dependency pair
is not in general type-preserving and is distinguished from the rewrite relation.

Definition 2 (dependency relation [3]). Let D ⊆ DP(R). The dependency
relation �D is defined as follows: s �D t if there exist a dependency pair
l � r ∈ D and a simply typed substitution σ such that s = lσ, t = rσ, and
head(t) ∈ Σd.

We say an S-expression s is terminating if there is no infinite rewrite sequence
starting from s, otherwise non-terminating. We denote the set of non-terminating
S-expressions by NT(R). The set of minimal (w.r.t. the subexpression relation E)
non-terminating S-expressions is denoted by NTmin(R). Let R be an STSRS and
D a set of simply typed dependency pairs of R. A dependency chain of D is an

infinite sequence t0, t1, . . . on NTmin(R)∩S(Σ, V)ST such that ti
nh
→∗

R · �D ti+1

for all i ≥ 0. For a set of dependency pairs D, we define DC(D) to be the set of
all subsets of D that admit any dependency chain. We may omit the parameters
R and D when they are not important.

Theorem 1 (termination by dependency chains [3]). An STSRS R is
terminating if and only if DC(DP(R)) = ∅.

A relation & on a set of S-expressions is a rewrite quasi-order if it is a quasi-
order that is closed under substitutions (i.e., s & t implies sσ & tσ for any
s, t, σ) and closed under contexts (i.e., s & t implies C[s] & C[t] for any
s, t, C). A pair 〈&,�〉 of relations on S-expressions is a reduction pair if (1) &

is a rewrite quasi-order, (2) � is closed under substitutions, and (3) there is no
infinite sequence t0 & · � t1 & · � t2 · · ·.

Definition 3 (preservation of dependency chain). Let R = 〈Σ,R 〉 be
an STSRS, D a set of simply typed dependency pairs of R, ϕ : S(Σ, V)ST →
S(Σ′, V), R′, D′ sets of untyped rewrite rules on S(Σ ′, V), and ψ : D → D′. A

quadruple 〈ϕ,R′, D′, ψ〉 preserves dependency chains of D if (1) s
nh
→∗

R · �D t

implies ϕ(s) →∗
R′ ·

r
→D′ ϕ(t), for all s, t ∈ NTmin(R), and (2) for all s, t ∈

S(Σ, V)ST and d ∈ D, s �{d} t implies ϕ(s)
r
→{ψ(d)} ϕ(t).

Lemma 1 (preservation of dependency chain). Let R = 〈Σ,R 〉 be an
STSRS and D a set of simply typed dependency pairs of R, 〈&,�〉 a reduction
pair, 〈ϕ,R′, D′, ψ〉 a quadruple that preserves dependency chains of D such that
R′ ⊆ & and D′ ⊆ &. If D \ D� admits no dependency chains where D� =
{d ∈ D | ψ(d) ⊆ �}, then D also admits no dependency chains.

Most of modern termination provers for first-order term rewriting employ
the DP framework [9]. Below we formulate a DP framework in the simply typed
setting. We first formulate the notion of DP problems in a way similar to the
first-order case.

Definition 4 (DP problems). A DP problem is a pair 〈D,R〉 where R is an
STSRS and D is a set of simply typed dependency pairs. A DP problem 〈D,R〉
is finite if DC(D) = ∅; it is infinite otherwise.

Using these notions, Theorem 1 is reformulated as follows.

Theorem 2 (termination by a DP problem). An STSRS R is terminating
iff the DP problem 〈DP(R),R〉 is finite.

The notion of DP processors for first-order DP problems [9] can be incorpo-
rated in a straightforward way.

Definition 5 (DP processors). A DP processor Φ on a set P of DP problems
is a function from P to the set of finite sets of DP problems. A DP processor
Φ on P is sound if, for any p ∈ P , the finiteness of all elements of Φ(p) implies
that of the DP problem p.

In contrast to the first-order case, the head symbol of the rhs of a dependency
pair may be a variable. Based on the head instantiation technique [3], however,
it suffices to handle dependency pairs whose head symbols of rhs’s are defined
constants. Such dependency pairs are said to be head-instantiated. To be more
precise, the head instantiation yields a sound DP processor Φ on the set of simply
typed DP problems such that any 〈D′,R′〉 ∈ Φ(〈D,R〉), R′ = R and D′ is a set
of head instantiated simply typed dependency pairs. Similarly, all techniques in
[3] are reformulated in the term of DP processors, as in the first-order case [9].

Definition 6 (DP tree [9]). A DP tree over the DP processors Φi (i ∈ I) is
a finite tree such that (1) each leaf node is labeled with a finite DP problem,
and (2) each internal node is labeled with a DP problem p such that (a) there is
a DP processors Φi on a domain that includes p and (b) its children nodes are
precisely those labeled with each element from Φi(p).

The following is a corollary of this definition and Theorem 2, which is used
as the basis of a design of termination provers.

Theorem 3 (termination by a DP tree). An STSRS R is terminating if
there exists a DP tree over sound DP processors such that root node is labeled
with the DP problem 〈DP(R),R〉.

The next theorem is an immediate consequence of Lemma 1, which is a basis
of all main results presented in this paper.

Theorem 4 (termination by reduction pairs). Let R = 〈Σ,R 〉 be an
STSRS, P a set of simply typed DP problems. Suppose Φ is a DP processor on P
given by Φ(〈D,R〉) = {〈D\D�,R〉} if there exists a reduction pair 〈&,�〉 such
that some quadruple 〈ϕ,R′, D′, ψ〉 preserves dependency chains of D, R′ ⊆ &,
D′ ⊆ & where D� = {d ∈ D | ψ(d) ⊆ �}, and Φ(〈D,R〉) = {〈D,R〉} otherwise.
Then Φ is sound.

3 Argument filterings

In the first-order case, an argument filtering associates each function symbol with
argument positions to be selected. In the simply typed case, not only the head
symbol but the depth of its occurrence in an S-expression needs to be considered
additionally. For example, we may want to give different filterings for the same
head symbol f in (f x y) and ((f x y) z), occurring at different depths.

We first formulate the domain of argument filtering functions.

Definition 7 (depth and filtering domain). The depth of a simple type τ
is defined as follows: depth(o) = 0; depth(τ1 × · · · × τn → τ0) = depth(τ0) + 1.
For a set X of simply typed constants and simply typed variables, the filtering
domain is defined by FDom(X) = {〈a, n〉 | a ∈ X, 0 ≤ n < depth(type(a))}.

By definition, depth(τ) > 0 for any function type τ .

Example 3 (filtering domain). In Example 1, we have FDom(Σ ∪ {F o→o→o}) =
{〈s, 0〉, 〈:, 0〉, 〈sum, 0〉, 〈+, 0〉, 〈+, 1〉, 〈F, 0〉, 〈F, 1〉, 〈fold, 0〉, 〈fold, 1〉}.

Definition 8 (recursive extraction of range type). For each n ≤ depth(τ),
τ � n is defined as follows: τ � 0 = τ ; (τ1 × · · · × τm → τ0) � (n+ 1) = τ0 � n.

Example 4 (recursive extraction of range type). We have ((o → o) × (o → o) →
o → o) � 2 = (o → o) � 1 = o.

Lemma 2 (property of depth). For each τ ∈ ST and n ≤ depth(τ), (1) τ � n
is the base type iff depth(τ) = n, (2) τ � n is a function type iff depth(τ) > n.

Proof. By induction on n. ut

Thus, for each 〈a, n〉 ∈ FDom(X), type(a) � n is a function type. So, we
define ArgPos(a, n) = {0, 1, · · · ,m} when type(a) � n = τ1 × · · · × τm → τ0.

Now we are ready to give the definition of argument filtering function.

Definition 9 (argument filtering). Let X be a set of simply typed constants
and simply typed variables. A function π : FDom(X) → List(N) ∪ N is an argu-
ment filtering for X if, for each 〈a, n〉 ∈ FDom(X), either π(a, n) = [i1, . . . , ik]
for some i1, · · · , ik ∈ ArgPos(a, n) with i1 < · · · < ik or π(a, n) ∈ ArgPos(a, n).
Note that if k = 0 then [i1, . . . , ik] is the empty list.

In order to select argument positions of a simply typed S-expression t speci-
fied by an argument filtering π, a natural number (together with a symbol) needs
to be designated. A notion of head depth is introduced for this purpose.

Definition 10 (head depth). The head depth of a simply typed S-expression is
defined as follows: hdep(a) = 0 if a is a constant or a variable; hdep((t0 t1 · · · tn)) =
hdep(t0) + 1.

Lemma 3 (property of head depth). Let s be a simply typed S-expression
and τ = type(head(s)). Then (1) τ � hdep(s) = type(s); (2) s has the base type
iff depth(τ) = hdep(s); (3) s has a function type iff depth(τ) > hdep(s).

Proof. (1) By induction on s. (2)–(3) Use (1) and Lemma 2. ut

Thus, if head(s) ∈ X and s has a function type τ , then hdep(s) < depth(τ),
and thus 〈head(s), hdep(s)〉 ∈ FDom(X). The head pair of a simply typed S-
expression t is defined by hpair(t) = 〈head(t), hdep(t)〉. Note that a non-head

rewrite step preserves both the head symbol and the head depth. Hence s
nh
→ t

implies hpair(s) = hpair(t).
An argument filtering recursively selects the designated subexpressions.

Definition 11 (application of argument filtering). Let π be an argument
filtering. For each simply typed S-expression t, the untyped S-expression π(t) is
defined as follows: (1) π(a) = a if a is a constant or a variable; (2) π((t0 t1 · · · tn)) =
(π(ti1) · · · π(tik)) if π(hpair(t0)) = [i1, . . . , ik]; (3) π((t0 t1 · · · tn)) = π(ti) if
π(hpair(t0)) = i.

Example 5 (application of argument filtering). We apply various argument fil-
tering functions to a fixed simply typed S-expression t = ((fold F x) y). If
π(fold, 1) is [], [1] or 1, then π(t) is (), (y), or y, respectively. Consider the case
π(fold, 1) = 0. If π(fold, 0) is [0, 1, 2] or 1, π(t) is (fold F x) or F , respectively. Let
π(fold, 1) = [0, 1]. If π(fold, 0) is [], [0, 1], or 0, then π(t) is (() y), ((fold F) y),
or (fold y), respectively.

Argument filtering can be soundly used for termination proofs provided that
the filtering preserves dependency chains. However, by the presence of function
variables and rewrite rules of function type, it does not always preserve depen-
dency chains as demonstrated in the examples below.

Example 6 (unsound filtering). Let R1 = 〈Σ1, R1 〉 be an STSRS where Σ1 = {
0o, fo→o, so→o } and R1 = { (f (F x)) → (f (s x)) }. Its dependency pair
〈f (F x), f (s x)〉 admits a dependency chain f (s x), f (s x), · · ·. This chain
is not preserved by an argument filtering π such that π(s, 0) = 1 and π(f, 0) =
π(F, 0) = [0, 1], because the filtered dependency pair 〈f (F x), f x〉 does not
admit the filtered chain f x, f x, · · ·.

Let R2 = 〈Σ2, R2 〉 be an STSRS where Σ2 = { fo→o, go→o, ho→o } and R2 =
{ (f (h x)) → (f (g x)), g → h }. The dependency pair 〈f (h x), f (g x)〉 in combi-
nation with the rewrite rule g → h admits a dependency chain f (h x), f (h x), · · ·.
This chain is not preserved by an argument filtering π such that π(f, 0) = 1,
π(g, 0) = [], and π(h, 0) = [1], because the filtered dependency pair (x) � ()
does not admit the filtered chain (x), (x), · · ·. Note that the rule g → h can not
be applied after filtering.

The first example suggests that filtering functions should consistently select
the same argument positions from both an expression with a function variable
and its instance. The second example suggests that filtering functions should
consistently select the same argument positions in a subexpression when its head
is rewritten by a rule of function type. The former suggestion is closely related
to the extraction of the substitution part from filtered S-expressions. Notions of
stabilization type and stable filtering functions are needed to show this.

Definition 12 (stabilization type). Let π be an argument filtering. For any
simply typed S-expression t, the set Stab(t) ⊆ ST of stabilization types of t is
defined as follows:

Stab(t) =

∅ if t is a constant or a variable

{type(t0) | head(t0) ∈ V } ∪
⋃k
j=1 Stab(tij)

if t = (t0 t1 · · · tn) and π(hpair(t0)) = [i1, . . . , ik]
{type(t0) | head(t0) ∈ V } ∪ Stab(ti)

if t = (t0 t1 · · · tn) and π(hpair(t0)) = i

Similarly to the first-order case, marking symbols of dependency pairs is
useful to distinguish defined head symbols from other symbols. We define Σ] =
Σ ∪ {a] | a ∈ Σd} where a] is a new constant having the same type as a. For

a simply typed S-expression t such that head(t) ∈ Σd, define t] recursively as

follows: t] = a] if t = a ∈ Σd; t] = (t]0 t1 · · · tn) if t = (t0 t1 · · · tn). We also define
S](Σ, V)ST = S(Σ, V)ST ∪ {t] | t ∈ S(Σ, V)ST, head(t) ∈ Σd}.

Definition 13 (stability). Let π be an argument filtering for Σ] ∪ V and T a
set of simple types. We say π is stable on T if for any 〈a, n〉, 〈b,m〉 ∈ FDom(Σ∪V)
and any τ ∈ T , type(a) � n = type(b) � m = τ implies π(a, n) = π(b,m). Note
that restrictions are imposed on argument positions only for unmarked symbols.

For a simply typed substitution σ and an argument filtering π, the substitu-
tion σπ is defined by σπ(x) = π(σ(x)).

Lemma 4 (extraction of substitution). Let t ∈ S](Σ, V)ST and σ : V →
S(Σ, V)ST be a simply typed substitution. Let π be an argument filtering for
Σ] ∪ V . If π is stable on Stab(t) then π(tσ) = π(t)σπ .

Proof. By induction on t. Use Lemma 3. ut

Definition 14 (stability w.r.t. rules). Let π be an argument filtering.

1. π is stable w.r.t. a set R of simply typed rewrite rules if for any rewrite rule
l → r ∈ R, π is stable on Stab(l)∪Stab(r) and if the rule is of function type
τ then π is stable on {τ, . . . , τ � (depth(τ) − 1)}.

2. π is stable w.r.t. a set D of simply typed head-instantiated dependency pairs
if π is stable on Stab(l]) ∪ Stab(r]) for every dependency pair l � r ∈ D.

Example 7 (stability w.r.t. rules). Let R = 〈Σ,R 〉 be the STSRS in Exam-
ple 1. An argument filtering π such that π(s, 0) = π(sum, 0) = π(+, 1) =
π(fold, 1) = [1], π(F, n) = [1] for all F ∈ V τ and n ∈ N such that τ � n =
o → o is stable w.r.t. R. Note that for this argument filtering π, we have
Stab(((F y) ((fold F x) ys))) = {o → o} and thus the type o → o → o /∈
⋃

l→r∈R(Stab(l)∪Stab(r)). Furthermore, since there is no rules of type o → o →
o in R, the stability w.r.t. R holds even if we have π(+, 0) 6= π(F o→o→o, 0).

Let π be an argument filtering, R a set of rewrite rules, and D a set of
head-instantiated dependency pairs. We write D] = {l] � r] | l � r ∈ D},
π(R) = {π(l) → π(r) | l → r ∈ R}, and π(D]) = {π(l]) → π(r]) | l � r ∈ D}.
An argument filtering as a transformation of a set of dependency pairs satisfies
condition (2) of dependency chain preservation in Section 2.

Lemma 5 (simulation of rewrite step). Let R = 〈Σ,R 〉 be an STSRS
and D a set of head-instantiated dependency pairs. Suppose that an argument
filtering π is stable w.r.t. R and D. If s, t ∈ S(Σ, V)ST then (1) s →R t implies

π(s) →=
π(R) π(t), (2) s

nh
→R t implies π(s]) →=

π(R) π(t]), and (3) s �D t implies

π(s])
r
→π(D]) π(t]).

Proof. (1) By induction on s. Use Lemma 4. (2) By induction on s. (3) By
Lemma 4. ut

Theorem 5 (argument filtering refinement). Let R = 〈Σ,R〉 be an STSRS
and P the set of simply typed DP problems. Suppose Φ is a DP processor
on P given by Φ(〈D,R〉) = {〈D\D�,R〉} if all dependency pairs in D are
head-instantiated and there exists a reduction pair 〈&,�〉 on S(Σ], V) and an
argument filtering π stable w.r.t. R and D, π(R) ⊆ &, π(D]) ⊆ & where D� =
{l � r ∈ D | π(l]) � π(r])}, and Φ(〈D,R〉) = {〈D,R〉} otherwise. Then Φ is a
sound DP processor on P .

Proof. By Lemma 5, s
nh
→∗ · �D t implies π(s]) →∗

π(R) ·
r
→π(D]) π(t]) for all

s, t ∈ S(Σ, V)ST. Hence the conclusion follows from Theorem 4. ut

Example 8 (termination proof (1)). Let R′ = 〈Σ′, R′ 〉 be an STSRS where Σ′ =

{ 0o, so→o, []
o
, : o×o→o, map(o→o)×o→o, ◦(o→o)×(o→o)→o→o, twice(o→o)→o→o

}, and R′ =
{

(map G []) → [] ((◦ G H) x) → (G (H x))
(map G (: x xs)) → (: (G x) (map G xs)) (twice G) → (◦ G G)

}

.

Then two DP problems 〈D1,R′〉, 〈D2,R′〉 are obtained from the head-instantiation
and dependency graph processors from the DP problem 〈DP(R),R〉 where

D1 =
{

(map] G (: x xs)) � (map] G xs)
}

, and D2 =

((◦] (◦ U V) H) x) � ((◦]
U V) (H x)) ((◦]

G (◦ U V)) x) � ((◦]
U V) x)

((◦] (twice U) H) x) � ((twice]
U) (H x)) ((◦]

G (twice U)) x) � ((twice]
U) x)

((twice]
G) x) � ((◦]

G G) x)

.

The finiteness of 〈D1,R′〉 is shown using the subterm criterion processor [3]. We
here show the finiteness of 〈D2,R′〉 based on the processor Φ given in Theorem 5.
Take an argument filtering π such that π(Ho→o, 0) = π(◦, 1) = π(twice, 1) = 1,
π(twice, 0) = π(twice], 0) = π(◦], 1) = [0, 1], and π(map, 0) = π(:, 0) = π(◦, 0) =
π(◦], 0) = [0, 1, 2]. Then π is stable w.r.t. R′ and D2, and we have π(R′) =

{

(map G []) → [] x → x

(map G (: x xs)) → (: x (map G xs)) (twice G) → (◦ G G)

}

, π(D]
2) =

((◦] (◦ U V) H) x) � ((◦]
U V) x) ((◦]

G (◦ U V)) x) � ((◦]
U V) x)

((◦] (twice U) H) x) � ((twice]
U) x) ((◦]

G (twice U)) x) � ((twice]
U) x)

((twice]
G) x) � ((◦]

G G) x)

.

Take the reduction pair 〈&,�〉 based on the lexicographic path ordering for S-
expressions [19] with the precedence twice > twice] > ◦], twice > ◦ > ◦], and
map > : . Then π(R) ⊆ & and π(D]) ⊆ � are satisfied. Therefore Φ(〈D2,R

′〉) =
{〈∅,R′〉}. Hence the DP problem 〈D2,R′〉 is finite and thus R′ is terminating.

4 Usable rules

The termination of the STSRS R = 〈Σ,R 〉 in Example 1 can be proved using
the dependency graph and the subterm criterion processors. However, the ter-
mination of combined STSRS R ∪ R′ = 〈Σ ∪ Σ′, R ∪ R′〉 of R (in Example 1)

and R′ = 〈Σ′, R′ 〉 (in Example 8) can not be shown by the processors obtained
so far. The problem is that no precedence produces the lexicographic path or-
der satisfying π(D]

2) ⊆ %, π(R ∪ R′) ⊆ %—the additional constraint π(R) ⊆ %
from R makes the reasoning in Example 8 failed. Usable rules criterion guar-
antees that only rewrite rules usable from a set of dependency pairs need to be
oriented so that the termination proof can be applied in a modular way. The
usable rules criterion for the first-order dependency pairs was first introduced
for the innermost termination [5] and later it is extended to the general case [9,
10].

By the presence of function variables, the usual first-order usable rules crite-
rion [9, 10] is not directly applicable in the simply typed setting. More precisely,
the usable rules criterion does not hold for the following naive extension of first-
order usable rules.

Definition 15 (naive usable rules). A relation IR on Σd is the smallest
quasi-order such that f IR g for every simply typed rewrite rule l → r ∈ R with
head(l) = f and g ∈ Σd(r). For a set D of head-instantiated dependency pairs,
UR(D]) = { l → r ∈ R | f IR head(l) for some f ∈ Σd(RHS(D])) } where
RHS(D]) = {r′ | l′ � r′ ∈ D]}.

Example 9 (counterexample). Let R = 〈Σ,R 〉 be an STSRS where Σ = { 0o,
f(o→o)×o→o, go→o } and R = { (f F 0) → (f F (F 0)), (g 0) → 0 }. Then we have
DP(R) = { (1) (f F 0) � (f F (F 0)), (2) (f F 0) � (F 0) }. For D = {(1)},
there is a dependency chain (f g 0) �D (f g (g 0)) →R (f g 0) �D · · ·.
However UR(D]) = ∅ and thus there is no infinite dependency chain on D and
UR(D]) ∪ {(cons x y) → x, (cons x y) → y}.

This example suggests that the way function variables may be instantiated
should be taken into consideration. In what follows, we present a usable rules
refinement for simply typed dependency pairs. As in the first-order case, the
notion of interpretation [21] is crucial to obtain this.

Definition 16 (interpretation). Let R = 〈Σ,R 〉 be an STSRS, Γ ⊆ Σ×N, π
an argument filtering, nil, cons fresh constants, and t ∈ S](Σ, V)ST a terminating
expression with the property that {s | t→∗

R s} is finite. Then the interpretation
IΓ,π(t) is an S-expression defined by

IΓ,π(t) =

{

Π(t) if hpair(t) /∈ Γ
(cons Π(t) order({IΓ,π(u) | t→R u})) if hpair(t) ∈ Γ

where

Π(a) = a
Π((t0 t1 · · · tn)) = IΓ,π(ti) if π(hpair(t0)) = i
Π((t0 t1 · · · tn)) = (IΓ,π(ti1) · · · IΓ,π(tik)) if π(hpair(t0)) = [i1, . . . , ik]

order(T) =

{

nil if T = ∅
(cons t order(T \ {t})) if t is the minimum element of T .

Here we assume an arbitrary but fixed total order on S(Σ], V). Our assumption
on t implies that the S-expression order({IΓ,π(u) | t→R u}) is well-defined (via
an inductive argument [10]). Clearly, when IΓ,π(t) is defined, IΓ,π(s) is defined
for any subexpression s of t. We omit the subscript Γ, π when it is obvious from
its context.

For a substitution σ such that I(σ(x)) is well-defined for all x ∈ Dom(σ), we
denote by σI a substitution defined by σI(x) = I(σ(x)).

Definition 17 (usable pairs w.r.t. an argument filtering). Let π be an
argument filtering and t ∈ S](Σ, V)ST a simply typed S-expression. Then the
set UPπ(t) of usable pairs in t w.r.t. π is defined as follows:

UPπ(t) =

{hpair(t) | t ∈ Σd} if t ∈ Σ] ∪ V
{hpair(t) | head(t) ∈ Σd ∪ V } ∪ UPπ(ti)

if t = (t0 · · · tn) and π(hpair(t0)) = i

{hpair(t) | head(t) ∈ Σd ∪ V } ∪
⋃k
j=1 UPπ(tij)

if t = (t0 · · · tn) and π(hpair(t0)) = [i1, . . . , ik]

We also put UPπ(T) = {UPπ(t) | t ∈ T} for any set T ⊆ S](Σ, V)ST.

Example 10 (usable pairs). Suppose π(fold, 0) = π(fold, 1) = [0, 1]. Then we have
UPπ(((fold + x) ys)) = {〈fold, 1〉, 〈fold, 0〉, 〈+, 0〉}.

Let CE = 〈Σ] ∪ {nil, cons}, {(cons x y) → x, (cons x y) → y}〉 be an SRS.

Lemma 6 (extraction of substitution in interpretation). Let R = 〈Σ,R〉
be an STSRS, Γ ⊆ Σd × N, and t ∈ S](Σ, V)ST. Suppose that σ is a simply
typed substitution, π is an argument filtering which is stable on Stab(t), and
IΓ,π(tσ) is well-defined. Then (1) I(tσ) →∗

CE
π(t)σI; (2) if UPπ(t) ∩ Γ = ∅ and

type(F) 6= type(f) � k for any 〈F, n〉 ∈ UPπ(t), 〈f, n+ k〉 ∈ Γ such that F ∈ V ,
then I(tσ) = π(t)σI.

Proof. By induction on t. ut

Definition 18 (simply typed usable rules). Let R = 〈Σ,R 〉 be an STSRS
and π an argument filtering.

1. A relation IST
R,π on (Σd ∪ V) × N is the smallest quasi-order that satisfies:

(1) hpair(l) IST
R,π 〈a, n〉 for any l → r ∈ R ∪ Exp(R) and 〈a, n〉 ∈ UPπ(r)

where Exp(R) =
⋃

l→r∈R Exp(l → r),
(2) 〈F, n〉 IST

R,π 〈f, n + k〉 for any F ∈ V , f ∈ Σd and n ∈ N such that
type(F) = type(f) � k, and

(3) 〈f, n+ 1〉 IST
R,π 〈f, n〉 for any f ∈ Σd and n ∈ N.

2. Let D be a set of head-instantiated dependency pairs. We define the set
of usable rules by UST

R,π(D
]) = {l → r ∈ R | 〈a, n〉 IST

R,π hpair(l) for some

〈a, n〉 ∈ UPπ(RHS(D]))}.

Below we put U∗ST
R,π (D]) = {l → r ∈ R ∪ Exp(R) | 〈a, n〉 IST

R,π hpair(l) for

some 〈a, n〉 ∈ UPπ(RHS(D]))}. Note that UST
R,π(D

]) = U∗ST
R,π (D]) ∩ R.

Lemma 7 (property of usable rules). Let R = 〈Σ,R 〉 be an STSRS and
D a set of head-instantiated dependency pairs, π an argument filtering. Let
U = UST

R,π(D
]), U∗ = U∗ST

R,π (D]), Γ = {〈f,m〉 | hpair(l) = 〈f,m′〉,m′ ≤ m, l →

r ∈ (R ∪ Exp(R)) \ U∗}, and t ∈ RHS(U∗) ∪ RHS(D]). (1) UPπ(t) ∩ Γ = ∅, (2)
type(F) 6= type(f) � k for any 〈F, n〉 ∈ UPπ(t), 〈f, n+ k〉 ∈ Γ such that F ∈ V .

Proof. Straightforward. ut

In the following lemma, only Lemma 7 for the case t ∈ RHS(U) ∪ RHS(D])
is needed.

Lemma 8 (preservation of rewrite step). Let R = 〈Σ,R 〉 be an STSRS,
D a set of head-instantiated dependency pairs, and π an argument filtering.
Let U = UST

R,π(D
]) such that π is stable w.r.t. U and D, U∗ = U∗ST

R,π (D]),
Γ = {〈f,m〉 | hpair(l) = 〈f,m′〉,m′ ≤ m, l → r ∈ (R ∪ Exp(R)) \ U∗}, and
s, t ∈ S](Σ, V) such that I(s) and I(t) are well-defined. Then (1) s→R t implies

I(s) →∗
CE∪π(U) I(t); (2) s �D] t implies I(s) →∗

CE
·

r
→π(D]) I(t).

Proof. (1) By induction on s. Use Lemmata 6 and 7. (2) By Lemmata 6 and
7. ut

We now arrive at the main result of this section.

Theorem 6 (simply typed usable rules refinement). Let R = 〈Σ,R〉 be
a finitely branching STSRS, and P a set of simply typed DP problems. Suppose
Φ is a DP processor on P given by Φ(〈D,R〉) = {〈D\D�,R〉} if all dependency
pairs in D are head-instantiated and there exists a reduction pair 〈&,�〉 on
S(Σ], V) and an argument filtering π stable w.r.t. U and D, CE ∪ π(U) ⊆ &,
π(D]) ⊆ & where U = UST

R,π(D
]), D� = {u � v ∈ D | π(u]) � π(v])}, and

Φ(〈D,R〉) = {〈D,R〉} otherwise. Then Φ is a sound DP processor on P .

Proof. Suppose s, t ∈ NTmin(R) and s
nh
→∗ · �D t. Since s, t ∈ NTmin(R) and R

is finitely branching, I(s]), I(t]) are well-defined. Hence I(s]) →∗
CE∪π(U) ·

r
→π(D])

I(t]) by Lemma 8. Hence the conclusion follows from Theorem 4. ut

Example 11 (termination proof (2)). Consider the combination R ∪ R′ = 〈Σ ∪
Σ′, R ∪ R′〉 of the STSRS R = 〈Σ,R 〉 in Example 1 and R′ = 〈Σ′, R′ 〉 in
Example 8. Using the head-instantiation, dependency graph, subterm criterion
processors, the finiteness of the DP problems other than 〈D2,R∪R′〉 is shown.
We show the finiteness of the DP problem 〈D2,R ∪ R′〉 using the DP proces-
sor Φ given in Theorem 6. Take an argument filtering π such that π(◦], 0) =
[0, 1, 2], π(◦], 1) = [0], π(◦, 0) = [0, 1, 2], π(◦, 1) = [], π(twice], 0) = [0, 1], and

π(twice], 1) = [0]. Then U = UST
R∪R′,π(D

]
2) = ∅, π is stable w.r.t. ∅ and D2, and

π(D]
2) =

((◦] (◦ U V) G)) � ((◦]
U V)) ((◦]

G (◦ U V))) � ((◦]
U V))

((◦] (twice U) G)) � ((twice]
U)) ((◦]

G (twice U))) � ((twice]
U))

((twice]
G)) � ((◦]

G G))

.

Take the reduction pair 〈&,�〉 as in Example 8. Then we have CE ∪ π(U) ⊆ �

and D]
2 ⊆ �. Thus Φ(〈D2,R ∪ R′〉) = {〈∅,R ∪ R′〉}. Hence the DP problem

〈D2,R ∪R′〉 is finite and thus we conclude that R∪R′ is terminating.

5 Experiments

The techniques in this paper have been implemented based on the dependency
pair method for simply typed S-expression rewriting [3], in which dependency
pairs, dependency graph, and the subterm criterion have been incorporated from
the first-order dependency pairs and the head instantiation technique is intro-
duced. The program consists of about 8,000 lines of code written in SML/NJ.
Constraints for ordering satisfiability problems are encoded as SAT-problems
and an external SAT-solver is called from the program to solve them. Most of
the SAT-encoding methods of these constraints are based on [6, 18]. We employed
the lexicographic path relation (comparing from left to right) for S-expressions
based on quasi-precedence [19, 20] for the reduction order. The dependency graph
processor and the head instantiation are included in default.

For the experiment, the 125 examples used in the experiment in [3] are em-
ployed. They consists of typical higher-order functions such as fold, map, rec,
filter of various types. All tests have been performed on a PC equipped with 4
Intel Xeon processors of 2.66GHz and a memory of 7GB.

The table below summarizes our experimental result. The columns below
the title ’direct’ show the results of experiments via our prover. The numbers of
examples where termination has been proved are on the column ’success’. The
numbers of examples which timeout (in 60 seconds) are on the column ’timeout’.
The total time (in seconds) needed to perform the checks for all the examples
are on the column ’total’. We compare our result with those obtained by the
corresponding first-order dependency pair techniques applied to a (naive) first-
order encoding [3] of our examples. They are listed on the columns below the
title ’first-order encoding’. We also tested termination proving of our first-order
encoded examples using competitive termination provers AProVE 07 [7] and
TTT2 [10] for first-order TRSs.

direct first-order encoding
success timeout total success timeout total

reduction pairs 28 0 3.439 43 0 3.830
+ argument filtering 73 0 17.397 53 0 16.606
+ usable rules 121 0 19.145 65 0 17.808
subterm criterion 98 0 3.824 59 0 3.435
+ reduction pairs 103 0 4.183 62 0 4.390
+ argument filtering 115 0 9.420 68 0 13.480
+ usable rules 121 0 12.162 68 0 13.761

AProVE 89 34 2,336.109
TTT2 94 6 1,245.639

The table shows the effectiveness of reduction pairs, argument filtering and
usable rules directly formulated in the simply typed S-expression framework.

6 Related works

Another similar framework of binder-free higher-order term rewriting is (simply-
typed) applicative term rewriting [2, 8, 11, 12], which is called term rewriting with

higher-order variables or simply-typed term rewriting in [13–17]. Applicative
terms can be seen as S-expressions on the signature whose function symbols
are unary. Applications of first-order dependency pairs for such frameworks are
studied in [2, 8, 11].

Dependency pairs and argument filterings for such frameworks are intro-
duced in [13]. Besides the difference of the framework (applicative terms vs. S-
expressions), the framework in [13] allows rewrite rules only of basic types. The
characterization of dependency chains and dependency pairs in the presence of
rewrite rules of function types are introduced by the authors in [3]. ([15] allows
rewrite rules of function types but without the special treatment for dependency
pairs from argument expansions as in [3].) Another notion of dependency pairs
based on strong computability (SC-dependency pairs) is studied in [15–17].

The argument filtering in [13–15, 17] is formulated as a function from Σ to
List(N)—therefore, there are two limitations compared to the one in this paper:
(1) variables are excluded from the domain of argument filterings (e.g., they
always have π(((F s1) s2)) = ((F π(s1)) π(s2)) when F ∈ V), and (2) eliminating
head symbols is not allowed (that is, π(((f s1) s2)) = f or π(((f s1) s2)) =
(f π(si)) is allowed but π(((f s1) s2)) = (π(s1) π(s2)), π(((f s1) s2)) = π(si), etc.
are not). Besides these limitations, some extra conditions on the precedence, the
form of the lhs of the rewrite rules and argument filterings are needed (Corollary
7.8 in [13], Theorem 6.12 in [14])—these conditions are simplified in [16] by
introducing argument filterings which, instead of eliminating subexpressions,
replaces them with new constants.

Compared to the usable rules in this paper, usable rules in [16, 17] (for SC-
dependency pairs) need to be closed with an (unusual) extra propagation rule
u→(�) v I l → r if 〈F, n〉 ∈ UPπ(u), F ∈ V (v), and type(l) � k = type(F) so
that they depend on lhs of the dependency pairs and rewrite rules. In contrast,
our usable rules criterion conservatively extends the first-order case. Moreover,
we obtain no larger set of usable rules than the one in [16, 17] for the same set
of dependency pairs. Hence our criterion is more effective to prove termination.

Acknowledgments

The authors thank Jeoren Ketema, Yoshihito Toyama, Yuki Chiba, and anony-
mous referees for their helpful comments. This work was partially supported by
a grant from JSPS (No. 20500002).

References

1. T. Aoto and T. Yamada. Termination of simply typed term rewriting systems
by translation and labelling. In Proc. of RTA 2003, volume 2706 of LNCS, pages
380–394. Springer-Verlag, 2003.

2. T. Aoto and T. Yamada. Termination of simply-typed applicative term rewriting
systems. In Proc. of HOR 2004, pages 61–65, 2004.

3. T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In
Proc. of RTA 2005, volume 3467 of LNCS, pages 120–134. Springer-Verlag, 2005.

4. T. Aoto and T. Yamada. Argument filterings and usable rules for simply typed
dependency pairs (extended abstract). In Proc. of HOR 2007, pages 21–27, 2007.

5. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-

oretical Computer Science, 236(1–2):133–178, 2000.
6. M. Codish, V. Lagoon, and P. J. Stuckey. Solving partial order constraints for LPO

termination. In Proc. of RTA 2006, volume 4098 of LNCS, pages 4–18. Springer-
Verlag, 2006.

7. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. of IJCAR 2006, volume
4130 of LNAI, pages 281–286. Springer-Verlag, 2006.

8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. of FroCoS 2005, volume 3717 of LNAI,
pages 216–231. Springer-Verlag, 2005.

9. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Mechanizing and improving de-
pendency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

10. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

11. N. Hirokawa, A. Middeldorp, and H. Zankl. Uncurrying for termination. In Proc.

of LPAR 2008, volume 5330 of LNCS, pages 667–681. Springer-Verlag, 2008.
12. R. Kennaway, J. W. Klop, R. Sleep, and F.-J. de Vries. Comparing curried and

uncurried rewriting. Journal of Symbolic Computation, 21:57–78, 1996.
13. K. Kusakari. On proving termination of term rewriting systems with higher-order

variables. IPSJ Transactions on Programming, 42(SIG 7 PRO 11):35–45, 2001.
14. K. Kusakari. Higher-order path orders based on computability. IEICE Trans. on

Inf. & Sys., E87–D(2):352–359, 2004.
15. K. Kusakari and M. Sakai. Enhancing dependency pair method using strong com-

putability in simply-typed term rewriting. Applicable Algebra in Engineering, Com-

munication and Computing, 18(5):407–431, 2007.
16. K. Kusakari and M. Sakai. Static dependency pair method for simply-typed term

rewriting and related techniques. IEICE Trans. on Inf. & Sys., E92–D(2):235–247,
2009.

17. T. Sakurai, K. Kusakari, M. Sakai, T. Sakabe, and N. Nishida. Usable rules and
labeling product-typed terms for dependency pair method in simply-typed term
rewriting systems (in Japanese). IEICE Trans. on Inf. & Sys., J90–D(4):978–989,
2007.

18. P. Schneider-Kamp, R. Thiemann, E. Annov, M. Codish, and J. Giesl. Proving
termination using recursive path orders and SAT solving. In Proc. of FroCoS ’07,
volume 4720 of LNAI, pages 267–282. Springer-Verlag, 2007.

19. Y. Toyama. Termination of S-expression rewriting systems: Lexicographic path
ordering for higher-order terms. In Proc. of RTA 2004, volume 3091 of LNCS,
pages 40–54. Springer-Verlag, 2004.

20. Y. Toyama. Termination proof of S-expression rewriting systems with recursive
path relations. In Proc. of RTA 2008, volume 5117 of LNCS, pages 381–391.
Springer-Verlag, 2008.

21. X. Urbain. Modular & incremental automated termination proofs. Journal of

Automated Reasoning, 32:315–355, 2004.
22. T. Yamada. Confluence and termination of simply typed term rewriting systems.

In Proc. of RTA 2001, volume 2051 of LNCS, pages 338–352. Springer-Verlag, 2001.

