
Argument Filterings and Usable Rules for Simply

Typed Dependency Pairs∗

(extended abstract)

Takahito Aoto† Toshiyuki Yamada‡

1 Introduction

Simply typed term rewriting [Yam01] is a framework of higher-order term rewrit-
ing without bound variables. The authors extended the first-order dependency
pair approach [AG00] to the case of simply typed term rewriting [AY05]. They
gave a characterization of minimal non-terminating simply typed terms and in-
corporated the notions of dependency pairs, dependency graphs, and estimated
dependency graphs into the simply typed framework. They extended the sub-
term criterion [HM04] of first-order dependency pairs and introduced the head
instantiation technique to make the simply typed dependency pair method ef-
fectively applicable even in the presence of function variables.

In this paper, we incorporate termination criteria using reduction pairs and
related refinements into the simply typed dependency pair framework. In par-
ticular, we extend the notions of argument filterings [AG00] and usable rules
[HM04, TGSK04] of first-order dependency pairs to the case of simply typed
term rewriting.

Refinements of dependency pair technique for higher-order systems with
bound variables are studied in [Bla06, SK05], and an approach to deal within
the framework of first-order dependency pairs is studied in [GTSK05]. In our
framework the presence of simple types and higher-order variables/rules are re-
flected in more specific way comparing with [GTSK05]. On the other hand,
since bound variables are not included in our framework, our dependency pair
framework is simpler and thus easy to automate compared to the methods in
[Bla06, SK05].

2 Preliminaries

A simple type is either the base type o or a function type τ1 × · · · × τn → τ0.
The set of simple types is denoted by ST. The sets of constants, variables, and
simply typed terms are denoted by Σ, V , and T(Σ, V), respectively. The head

symbol of a simply typed term is defined as follows: head(a) = a for a ∈ Σ∪ V ;

∗The authors thank Jeroen Ketema and the referees for their comments.
†RIEC, Tohoku University, Japan. aoto@nue.riec.tohoku.ac.jp
‡Graduate School of Engineering, Mie University, Japan. toshi@cs.info.mie-u.ac.jp

1

head((t0 t1 · · · tn)) = head(t0). The set PV(t) of primary variables in a term t
is defined as follows: PV(t) = ∅ if t ∈ Σ ∪ V ; PV(t) = {t0} ∪

⋃

i>0 PV(ti) if t =
(t0 t1 · · · tn) and t0 ∈ V ; PV(t) =

⋃

i≥0 PV(ti) if t = (t0 t1 · · · tn) and t0 /∈ V .
Let R = 〈Σ, R 〉 be a simply typed term rewriting system (STTRS, for short).
The set Σd of defined symbols of R is defined by Σd = {head(l) | l → r ∈ R}.

Example 1 (simply typed term rewriting) Let R = 〈Σ, R 〉 be an STTRS
where Σ = { 0o, so→o, []

o
, : o×o→o, map(o→o)×o→o, ◦(o→o)×(o→o)→o→o,

twice(o→o)→o→o }, and

R =

(1) map F [] → []
(2) map F (: x xs) → : (F x) (map F xs)
(3) (◦ F G) x → F (G x)
(4) twice F → ◦ F F

.

Here is a rewrite sequence of R:

map (twice s) (: 0 []) →R map (◦ s s) (: 0 [])
→R : ((◦ s s) 0) (map (◦ s s) [])
→R : (s (s 0)) (map (◦ s s) [])
→R : (s (s 0)) [].

3 Termination by reduction pairs

The head rewrite step
h
→ is defined recursively as follows: s

h
→ t if (1) s = lσ

and t = rσ for some rewrite rule l → r and some substitution σ or (2)

s = (s0 u1 · · · un), t = (t0 u1 · · · un), and s0
h
→ t0. The non-head rewrite step

is defined by
nh
→ = →\

h
→. Let D be a set of dependency pairs of an STTRS R. In

simply typed term rewriting, a root rewrite step using a dependency pair is dis-
tinguished from the rewrite relation (since it is not in general type-preserving),
and denoted by �D. A dependency chain of D is an infinite sequence t0, t1, . . .

on NTmin(R) such that ti
nh
→∗ · �D ti+1 for all i ≥ 0. Here, NTmin(R) is

the set of minimal (with respect to the subterm relation E) non-terminating
terms. The family of all minimal (with respect to the set inclusion ⊆) sets of
dependency pairs that admit dependency chain is denoted by DCmin(R). For
D ∈ DCmin(R), every element of D occurs infinitely often in its dependency
chain.

Theorem 2 (termination by reduction pairs) Let R = 〈Σ, R 〉 be an STTRS
and D a finite set of dependency pairs. If there exists a reduction pair 〈&, >〉
such that R ⊆ &, D ⊆ &, and D ∩ > 6= ∅, then D /∈ DCmin.

In contrast to the first-order case, heads of rhs of dependency pairs need
not be constants in general. Based on the head instantiation technique [AY05],
however, it suffices to handle dependency pairs whose heads of rhs are constants.
Such dependency pairs are referred to as head-instantiated dependency pairs.

4 Argument filterings

Since argument filtering may not preserve well-typedness, we need an underlying
untyped calculus. For this, the framework of S-expression reduction systems

2

(SRSs for short) [Toy04] is suitable. An S-expression is a first-order term with a
special variadic function symbol @. The set S(Σ, V) of S-expressions is defined
as: Σ ∪ V ⊆ S(Σ, V); if s1, . . . , sn ∈ S(Σ, V) (n ≥ 0) then @(s1, . . . , sn) ∈
S(Σ, V). An S-expression @(s1, . . . , sn) is abbreviated as (s1 · · · sn). We note
that () and (()(())) are also S-expressions. Each simply typed term can be
regarded as an S-expression by forgetting its type information.

The first-order argument filtering is specified by function symbols, that is,
π(f(s1, . . . , sn)) is defined by the value of π(f). In contrast, the head symbol
of a simply typed term t is insufficient to specify filtering of t: e.g. (f x y) and
((f x y) z) have the same head symbol but may have different filtering—the
depth of head symbol occurrence needs to be considered additionally.

Definition 3 (filtering domain) Let X be a set of simply typed constants
and simply typed variables. We define the filtering domain D(X) ⊆ X × N for
X by D(X) =

⋃

τ{〈a, n〉 | a ∈ X, a is of type τ , 0 ≤ n < depth(τ)}. Here, the
depth of a simple type τ is defined as follows: depth(o) = 0; depth(τ1×· · ·×τn →
τ0) = depth(τ0) + 1.

The head depth of a simply typed term t is defined as follows: hdep(a) = 0
for a ∈ Σ ∪ V ; hdep((t0 t1 · · · tn)) = hdep(t0) + 1. The next lemma shows
that mappings from the filtering domain are suitable to specify all argument
filterings.

Lemma 4 Let X be a set of simply typed constants and simply typed variables.
If s has a function type and head(s) ∈ X , then 〈head(s), hdep(s)〉 ∈ D(X).

The marking of head symbols similar to the first-order dependency pairs is
useful to simplify the definition of argument filtering. For each a ∈ Σd, let a]

be a new constant having the same type as a. Let Σ]
d = {a] | a ∈ Σd} and

Σ] = Σ ∪ Σ]
d.

For each s ∈ T(Σ, V) of type τ and n ≤ depth(τ), type(s, n) is defined as:
type(s, 0) = τ ; type(s, n + 1) = τ0 if type(s, n) = τ1 × · · · × τm → τ0. For any
function type τ , |τ | is defined as: |τ1 × · · · × τm → τ0| = m.

Definition 5 (argument filtering) Let L be the set of natural numbers and
lists of natural numbers. An argument filtering π is a function from D(Σ] ∪ V)
to L such that for each 〈f, n〉 ∈ D(Σ] ∪ V), either π(f, n) = [i1, . . . , ik] for some
0 ≤ i1 < · · · < ik ≤ |type(f, n)| or π(f, n) = i for some 0 ≤ i ≤ |type(f, n)|.
Note that k ≥ 0 and k = 0 means that the result is an empty list.

For a simply typed term t such that head(t) ∈ Σd, define t] recursively as

follows: t] = a] if t = a ∈ Σd; t] = (t]0 t1 · · · tn) if t = (t0 t1 · · · tn). The set of
terms T(Σ, V) ∪ {t] | t ∈ T(Σ, V), head(t) ∈ Σd} is denoted by T](Σ, V).

Definition 6 (application of argument filtering) Let π be an argument
filtering. For each simply typed term t ∈ T](Σ, V), an S-expressions π(t) is
defined as follows: (1) π(a) = a for all a ∈ Σ] ∪ V ; (2) π((t0 t1 · · · tn)) =
(π(ti1) · · · π(tik

)) if π(head(t0), hdep(t0)) = [i1, . . . , ik]; (3) π((t0 t1 · · · tn)) =
π(ti) if π(head(t0), hdep(t0)) = i.

Filtering functions should consistently select the same argument positions
from both a term with head variable and its instance.

3

Example 7 (unsound filtering (1)) Let R = 〈Σ, R 〉 be an STTRS where
Σ = { 0o, fo→o, so→o } and

R =
{

f (F x) → f (s x)
}

.

If π is an argument filtering such that π(s, 0) = 1 and π(f, 0) = π(f], 0) =
π(F, 0) = [0, 1], the following satisfiable set of constraints is obtained: {f (F x) ≥
f x, f] (F x) > f] x}. Since R is not terminating, this argument filtering is
unsound.

Filtering functions should consistently select the same argument positions
from a term when its head is rewritten by a rule of function type.

Example 8 (unsound filtering (2)) Let R = 〈Σ, R 〉 be an STTRS where
Σ = { fo→o, go→o, ho→o } and

R =

{

f (h x) → f (g x)
g → h

}

.

Let D = {f] (h x) � f] (g x)}. If π is an argument filtering such that π(f, 0) =
π(g, 0) = [], π(f], 0) = [0, 1], and π(h, 0) = [1], the following satisfiable set of
constraints is obtained: {() ≥ (), g ≥ h, (f] (x)) > (f] ())}. Since R is not
terminating, this argument filtering is unsound.

Definition 9 (stabilization domain) Let π be an argument filtering. For
any simply typed term t ∈ T](Σ, V), the set SDom(t) ⊆ D(Σ ∪ V) of sta-

bilization domain of t is defined as: SDom(a) = ∅; SDom((t0 t1 · · · tn)) =
⋃

{SDom(tij
) | 1 ≤ j ≤ k} if π(head(t0), hdep(t0)) = [i1, . . . , ik] and head(t0) ∈

Σ]
d; SDom((t0 t1 · · · tn)) = {〈head(t0), hdep(t0)〉} ∪

⋃

{SDom(tij
) | 1 ≤ j ≤ k} if

π(head(t0), hdep(t0)) = [i1, . . . , ik] and head(t0) ∈ Σ∪V ; SDom((t0 t1 · · · tn)) =

SDom(ti) if π(head(t0), hdep(t0)) = i and head(t0) ∈ Σ]
d; SDom((t0 t1 · · · tn)) =

{〈head(t0), hdep(t0)〉} ∪ SDom(ti) if π(head(t0), hdep(t0)) = i and head(t0) ∈
Σ ∪ V .

Definition 10 (stability) Let X be a set of simply typed constants and simply
typed variables. Let f be a function from D(X) to L. (1) f is stable w.r.t. a
simple type τ if for any 〈a, n〉, 〈b, m〉 ∈ D(X), type(a, n) = type(b, m) = τ
implies f(a, n) = f(b, m). (2) f is stable w.r.t. A ⊆ D(X) if f is stable w.r.t.
any τ in the set {type(a, n) | 〈a, n〉 ∈ A, a ∈ V }.

Definition 11 (stability w.r.t. rules) Let π be an argument filtering and
πnh = π↓D(Σ, V). Here, ↓ denotes the operation of restricting the domain.

1. π is stable w.r.t. a set R of simply typed rewrite rules if πnh is stable w.r.t.
⋃

l→r∈R SDom(l)∪SDom(r) and if R contains a simply typed rewrite rule

of function type τ then πnh is stable w.r.t. τ, . . . , τ + (depth(τ) − 1).

2. π is stable w.r.t. a set D of simply typed dependency pairs if πnh is stable
w.r.t.

⋃

l�r∈D SDom(l]) ∪ SDom(r]).

Theorem 12 (argument filtering refinement) Let R = 〈Σ, R 〉 be an STTRS
and D a finite set of head-instantiated dependency pairs. If there exists a re-
duction pair 〈&, >〉 on S(Σ, V) and an argument filtering π stable w.r.t. R and
D, π(R) ⊆ &, π(D]) ⊆ &, and π(D]) ∩ > 6= ∅, then D /∈ DCmin.

4

5 Usable rules

Definition 13 (usable rules) We write f I g when there exists a simply
typed rewrite rule l → r ∈ R such that head(l) = f and g ∈ Σd(r). We denote
the reflexive transitive closure of I by I∗. For a set D of head-instantiated
dependency pairs,

UR(D]) = {l → r ∈ R | f I∗ head(l) for some f ∈ Σd(RHS(D]))}.

Let CE = 〈{nil, cons}, CE〉 be an SRS where CE = {(cons x y) → x, (cons x y) →
y}. Let us first explain that a naive extension of usual first-order usable rules
criteria is not adapted to the higher-order setting.

Example 14 (counterexample) Let R = 〈Σ, R 〉 be an STTRS where Σ = {
0o, f(o→o)×o→o, go→o } and

R =

{

f F 0 → f F (F 0)
g 0 → 0

}

.

For D = {f F 0 � f F (F 0)}, there is an infinite dependency chain f g 0 �D

f g (g 0) →R f g 0 �D · · · . However UR(D]) = ∅ and thus there is no infinite
dependency chain on D and CE ∪ UR(D]).

Definition 15 (higher-order usable rules) 1. The range-order � is the
smallest partial order on ST satisfying τ1 × · · · × τn → τ0 � τ0.

2. We write f Ih g when (1) there exists a simply typed rewrite rule l → r ∈
R such that head(l) = f and g ∈ Σd(r), or (2) there exists a simply typed
rewrite rule l → r ∈ R and F τ ∈ PV(r) such that head(l) = f , gρ ∈ Σd

for some ρ � τ . We denote the reflexive transitive closure of Ih by I∗
h.

3. Let D be a set of head-instantiated dependency pairs. Then

Uh
R(D]) = {l → r ∈ R | f I∗

h head(l) for some f ∈ Σd(RHS(D]))}

Theorem 16 (usable rules refinement) Let R = 〈Σ, R 〉 be an STTRS and
D a finite set of head-instantiated dependency pairs. If there exists a reduction
pair 〈&, >〉 on S(Σ] ∪ {cons, nil}, V) such that CE ∪ Uh

R(D]) ⊆ &, D] ⊆ &, and
D] ∩ > 6= ∅, then D /∈ DCmin.

Example 17 (termination proof) Let R be the STTRS of Example 1. The
set of dependency pairs of R is as follows:

(5) map F (: x xs) � F x
(6) map F (: x xs) � map F xs
(7) (◦ F G) x � F (G x)
(8) (◦ F G) x � G x
(9) twice F � ◦ F F
(10) twice F � ◦
(11) (twice F) x � (◦ F F) x

.

Two SCCs are obtained from its (approximated) dependency graph—namely,
{(6)} and {(7), (8), (9)}. Let D = {(7), (8), (9)}. The head instantiation and

5

head marking of D yields the following set D′ of simply typed dependency pairs:

(7a) (◦] (◦ U V) G) x � (◦] U V) (G x)

(7b) (◦] (twice U) G) x � (twice] U) (G x)
(8a) (◦] F (◦ U V)) x � (◦] U V) x

(8b) (◦] F (twice U)) x � (twice] U) x

(9) (twice] F) x � (◦] F F) x

.

We have Uh
R(D′) = {(3), (4)}. By taking a stable argument filtering π such that

π(F o→o, 0) = π(◦, 1) = π(twice, 1) = 1, π(twice, 0) = π(twice], 0) = π(◦], 1) =
[0, 1], and π(◦, 0) = π(◦], 0) = [0, 1, 2], we get the following set of constraints:

x ≥ x
twice F ≥ ◦ F F
(◦] (◦ U V) G) x > (◦] U V) (G x)

(◦] (twice U) G) x > (twice] U) (G x)
(◦] F (◦ U V)) x > (◦] U V) x

(◦] F (twice U)) x > (twice] U) x

(twice] F) x > (◦] F F) x

.

All constraints are satisfied by the lexicographic path ordering for S-expressions
[Toy04] with the precedence twice > twice] > ◦] and twice > ◦ > ◦]. It is not
hard to show {(6)} /∈ DCmin in a similar way. Thus R is terminating.

References

[AG00] T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. TCS, 236(1–2):133–178, 2000.

[AY05] T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting.
In Proc. of RTA 2005, volume 3467 of LNCS, pages 120–134. Springer-
Verlag, 2005.

[Bla06] F. Blanqui. Higher-order dependency pairs. In Proc. of WST 2006, pages
22–26, 2006.

[GTSK05] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving
termination of higher-order functions. In Proc. of FroCoS 2005, volume
3717 of LNAI, pages 216–231. Springer-Verlag, 2005.

[HM04] N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proc. of

RTA 2004, volume 3091 of LNCS, pages 249–268. Springer-Verlag, 2004.

[SK05] M. Sakai and K. Kusakari. On dependency pair method for proving ter-
mination of higher-order rewrite systems. IEICE Trans. on Inf. & Sys.,
E88-D(3):583–593, 2005.

[TGSK04] R. Thiemann, J. Giesl, and P. Schneider-Kamp. Improved modular ter-
mination proofs using dependency pairs. In Proc. of IJCAR 2004, volume
3097 of LNAI, pages 75–90. Springer-Verlag, 2004.

[Toy04] Y. Toyama. Termination of S-expression rewriting systems: Lexicographic
path ordering for higher-order terms. In Proc. of RTA 2004, volume 3091
of LNCS, pages 40–54. Springer-Verlag, 2004.

[Yam01] T. Yamada. Confluence and termination of simply typed term rewriting
systems. In Proc. of RTA 2001, volume 2051 of LNCS, pages 338–352.
Springer-Verlag, 2001.

6

