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Abstract

We present new criteria for ensuring non-joinability of terms based on interpretation and
ordering, and report on an implementation of confluence disproving procedure based on
some instances of the criteria. The experiment reveals that our methods can be applied to
automatically disprove confluence of some term rewriting systems, on which state-of-the-
art automated confluence provers fail.

1 Introduction

In contrast to many dedicated techniques that have been developed to prove confluence of
term rewriting systems, not many techniques for disproving confluence are known. A typical
approach to disprove confluence of (non-terminating) TRSs is first to construct some candidates
of two terms that can be reduced from a common term, and then to show that these candidates
are not joinable, i.e. they do not have a common reduct. In this scenario, as well as the selection
of the candidates, proving non-joinability of terms is essential. So far, the only serious approach
to prove the non-joinability of terms is to use approximation by tree automata [4, 7].

In this paper, we give new methods for proving that given two terms s, t are not joinable.
The first method consists in giving an interpretation, e.g. a mapping from terms to natural
numbers, that is preserved by the application of usable rules and such that the interpretation
of s is different from that of t. The second method consists in giving an ordering > such
that s > t, and usable rules from s only increase or preserve w.r.t. > and the usable rules
from t only decrease or preserve w.r.t. >. These methods are implemented using polynomial
interpretations and recursive path orderings—interpretations and orderings that are widely
used in the literature for termination proving. The experiment reveals that our methods can
be applied to automatically disprove confluence of some term rewriting systems, on which
state-of-the-art automated confluence provers fail to disprove.

2 Preliminaries

We assume familiarity with standard notions and notations on term rewriting (see e.g. [3]).
Below we explain some extra notations used in the paper. The disjoint union of two sets A
and B is denoted by A ⊎ B, and that of all Ai (i ∈ I) by

⊎
i∈I Ai. The set of terms over a set

F of function symbols and the set V of variables is denoted by T(F ,V). The set of variables
in a term t is denoted by V(t). We write s E t to denote that s is a subterm of t. We write
Unif(s, t) to denote that the terms s and t are unifiable. A rewrite rule l → r is a pair of
terms; we here drop the usual restriction that l /∈ V and V(r) ⊆ V(l). A rewrite relation is a
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relation on terms that is closed under contexts and substitutions. A strict partial order (partial
order, quasi-order) is a rewrite strict partial order (rewrite partial order, rewrite quasi-order,
respectively) if it is a rewrite relation.

Given a term s, the sets of terms {t ∈ T(F ,V) | s
∗
→ t} and {t ∈ T(F ,V) | t

∗
→ s}

are denoted by [s](
∗
→) and (

∗
→)[s], respectively. Terms s and t are said to be joinable if

[s](
∗
→) ∩ [t](

∗
→) 6= ∅, and non-joinable otherwise. We write NJ(s, t) to denote that the terms s

and t are non-joinable. In order to disprove that a TRS R is confluent, we construct two terms
s and t such that (

∗
→)[s] ∩ (

∗
→)[t] 6= ∅ in some way, and then prove NJ(s, t). From here on, we

concentrate on the problem of proving NJ(s, t), the non-joinability problem.

3 Proving Non-Joinability by Interpretation

In this section, we present several criteria to prove non-joinability of terms based on their
interpretations in F-algebras.

An F-algebra A = 〈A, 〈fA〉f∈F 〉 is a pair of a set A and a tuple of functions fA : An → A
for each n-ary function symbol f ∈ F . The set A is called the carrier set of the F-algebra
A and is denoted by |A|. A valuation on the F-algebra A is a mapping V → A. Suppose an
F-algebra A = 〈A, (fA)f∈F 〉 is fixed. Then the interpretation of a term under the valuation σ
is denoted by [[t]]σ.

The notion of usable rules [2] is well-known in the literature for proving termination of
TRSs. We introduce a notion of usable rules for non-joinability suitable for our setting. For
this, the notion of TCAP [5] is used. For terms t, TCAP(t) is defined recursively like this:
TCAP(x) = x′, TCAP(f(t1, . . . , tn)) = x′ if Unif(f(u1, . . . , un), l) for some l → r ∈ R, and
TCAP(f(t1, . . . , tn)) = f(u1, . . . , un) otherwise, where ui = TCAP(ti) (1 ≤ i ≤ arity(f)).
Here, a new fresh variable is taken for x′ every time it is used. Our notion of usable rules is
obtained from the one for innermost termination [5] by replacing ICAP with TCAP.

Definition 1 (usable rules). The set of usable rules for non-joinability w.r.t. TRS R and a
term s is the smallest set Unj(R, s) ⊆ R satisfying two conditions: (i) for any l → r ∈ R and
non-variable subterm f(u1, . . . , un) E s, if Unif(f(TCAP(u1), . . . ,TCAP(un)), l) then l → r ∈
Unj(R, s); (ii) if l′ → r′ ∈ Unj(R, s) and l → r ∈ Unj(R, r′), then l → r ∈ Unj(R, s).

The following is a key lemma for proving our theorem given below.

Lemma 2. Let R be a TRS, l → r ∈ R and s, t terms. If s
∗
→R ◦ →{l→r} t then l → r ∈

Unj(R, s).

Theorem 3. Let s, t be terms and A = 〈A, 〈fA〉f∈F 〉 an F-algebra such that A =
⊎

i∈I Ai.
Suppose (i) for any valuation σ and l → r ∈ Unj(R, s)∪Unj(R, t), if [[l]]σ ∈ Ai then [[r]]σ ∈ Ai, (ii)
for any f ∈ F , a ∈ A and i, j ∈ I, if a ∈ Ai implies fA(. . . , a, . . .) ∈ Aj, then fA(. . . , b, . . .) ∈
Aj for any b ∈ Ai and (iii) [[s]]ρ ∈ Ai and [[t]]ρ ∈ Aj for some valuation ρ and i 6= j. Then
NJ(s, t).

The criterion of Theorem 3, in general, is not amenable for automation, and one has to use
more concrete instances of the theorem such as given below.

Corollary 4. Let A be an F-algebra and s, t be terms. Suppose (i) [[l]]σ = [[r]]σ for any valuation
σ and l → r ∈ Unj(R, s) ∪ Unj(R, t) and (ii) [[s]]ρ 6= [[t]]ρ for some valuation ρ. Then NJ(s, t).
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Corollary 5. Let s, t be terms and A an F-algebra whose carrier set is a set of integers. Suppose
there exists an integer k ≥ 2 such that (i) for any valuation σ and l → r ∈ Unj(R, s)∪Unj(R, t),
[[l]]σ ≡ [[r]]σ (mod k) and (ii) [[s]]ρ 6≡ [[t]]ρ (mod k) for some valuation ρ. Then NJ(s, t).

In following examples, non-confluence is shown using these corollaries.

Example 6. Let R = {(1) : a → h(c), (2) : a → h(f(c)), (3) : h(x) → h(h(x)), (4) : f(x) →

f(g(x))}. Let s = h(c) and t = h(f(c)). As a ∈ (
∗
→)[s] ∩ (

∗
→)[t], it suffices to show NJ(s, t) to

disprove the confluence of R. We have Unj(R, s) ∪ Unj(R, t) = {(3), (4)}. Take an F-algebra
A = 〈{0, 1}, 〈fA〉f∈F 〉 as aA = cA = 0, fA(n) = 1 − n, hA(n) = gA(n) = n. Then for
any valuation σ, we have [[h(x)]]σ = σ(x) = [[h(h(x))]]σ and [[f(x)]]σ = 1 − σ(x) = [[f(g(x))]]σ;
thus, [[l]]σ = [[r]]σ for each l → r ∈ Unj(R, s) ∪ Unj(R, t). Take an arbitrary valuation ρ. Then
[[s]]ρ = [[h(c)]]ρ = 0 6= 1 = [[t]]ρ = [[h(f(c))]]ρ. Therefore, NJ(s, t) by Corollary 4.

Example 7. Let R = {(1) : a → f(c), (2) : a → h(c), (3) : f(x) → h(g(x)), (4) : h(x) → f(g(x))}.
Let s = f(c) and t = h(c). We have Unj(R, s) ∪ Unj(R, t) = {(3), (4)}. Take an F-algebra
A = 〈N, 〈fA〉f∈F 〉 as aA = cA = 0, gA(n) = n + 1, fA(n) = n, hA(n) = n + 1. Then
[[f(x)]]σ−[[h(g(x))]]σ = σ(x)−(σ(x)+2) = −2 and [[h(x)]]σ−[[f(g(x))]]σ = (σ(x)+1)−(σ(x)+1) =
0. Take k = 2. Then [[f(x)]]σ ≡ [[h(g(x))]]σ (mod k) and [[h(x)]]σ ≡ [[f(g(x))]]σ (mod k) for
any valuation σ. Furthermore, since we have [[s]]ρ = [[f(c)]]ρ = 0 and [[t]]ρ = [[h(c)]]ρ = 1,
[[s]]ρ 6≡ [[t]]ρ (mod k). Hence, NJ(s, t) by Corollary 5.

4 Proving Non-Joinability by Ordering

In Corollary 5, we considered the case that the carrier set is a set of integers. In such a case,
another obvious choice to obtain a partition of the carrier set is to divide it as A = {n ∈ A |
n < k} ⊎ {n ∈ A | k ≤ n} for some k. We first formulate this idea in a more abstract setting,
using the notion of ordered F-algebra [10].

An ordered F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is a triple of a set A, a partial order ≤ on it and
a tuple of functions fA : An → A for each n-ary function symbol f ∈ F . We use < to denote
strict part of ≤, i.e. < = ≤\≥. An ordered F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is said to be weakly
monotone if a ≤ b implies fA(. . . , a, . . .) ≤ fA(. . . , b, . . .) for any a, b ∈ A and f ∈ F .

Theorem 8. Let A be a weakly monotone ordered F-algebra and s, t be terms. Suppose (i)
[[l]]σ ≤ [[r]]σ for any valuation σ and any l → r ∈ Unj(R, s), (ii) [[l]]σ ≥ [[r]]σ for any valuation σ
and any l → r ∈ Unj(R, t) and (iii) [[s]]ρ > [[t]]ρ for some valuation ρ. Then NJ(s, t).

We next consider the case that term algebras are taken as F-algebras, and formulate the
theorem in a more general way using the notion of rewrite relation. For this, the following
notion is useful.

Definition 9 (discrimination pair). A pair 〈&,≻〉 of two relations & and ≻ is said to be
a discrimination pair if (i) & is a rewrite relation, (ii) ≻ is a strict partial order and (iii)
& ◦ ≻ ⊆ ≻ and ≻ ◦& ⊆ ≻.

Clearly, for any rewrite quasi-order &, the pair 〈&,& \.〉 forms a discrimination pair.
Before presenting the next theorem, another notion from termination proving is required.

An argument filtering [2] is a mapping such that π(f) ∈ {[i1, . . . , ik] | i1 < · · · < ik, 1 ≤
i1, . . . , ik ≤ arity(f)}∪ {i | 1 ≤ i ≤ arity(f)}. Then the application tπ of the argument filtering
π to terms t is given by xπ = x for x ∈ V, f(t1, . . . , tn)

π = f(tπi1 , . . . , t
π
ik
) if π(f) = [i1, . . . , ik],

f(t1, . . . , tn)
π = tπi if π(f) = i. For a TRS R, we put Rπ = {lπ → rπ | l → r ∈ R}.
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Theorem 10. Let R be a TRS and s, t terms. Suppose there exist a discrimination pair 〈&,≻〉
and an argument filtering π such that Unj(R

π, sπ) ⊆ ., Unj(R
π, tπ) ⊆ & and sπ ≻ tπ. Then

NJ(s, t).

In terms of interpretations, Theorem 10 amounts to take term algebras as F-algebras, while
Theorem 8 allows to take any F-algebra. On the other hand, in terms of discrimination pairs,
Theorem 8 amounts to take a discrimination pair of the form 〈&,& \.〉.

Example 11. Let R = {(1) : c → f(c, d), (2) : c → h(c, d), (3) : f(x, y) → h(g(y), x), (4) :
h(x, y) → f(g(y), x)}. Let s = h(f(c, d), d) and t = f(c, d). Take an argument filtering π as
π(g) = 1, π(f) = [2] and π(h) = [1]. Then we have Unj(R

π, sπ) = Unj(R
π, tπ) = {(3)π, (4)π}.

The constraint {h(f(d)) ≻ f(d), f(y) ≃ h(y), h(x) ≃ f(x)} is satisfied by a discrimination pair
〈&rpo,&rpo \.rpo〉, where &rpo is the recursive path order based on the precedence f ≃ h. Thus
NJ(s, t) by Theorem 10.

5 Implementations and Experiments

Implementations The following instances of presented criteria have been implemented. We
assume below that we check non-joinability of ground terms s, t.

Cor. 5 (k = 2, 3) Corollary 5 applied for the polynomial interpretation with linear polynomials.
In case k = 2, we check whether [[l]]σ− [[r]]σ is even for all rewrite rules l → r ∈ Unj(R, s)∪
Unj(R, t) and whether [[s]] − [[t]] is odd. We encode these constraints in boolean formulas
and check the constraints by an external SAT solver. We deal with integer variables of
the range between 0 and 15. The case k = 3 is similar.

Th. 8 (poly) Theorem 8 applied for polynomial interpretation with linear polynomials. Sim-
ilar to the case Cor. 5 (k = 2, 3), we encode the constraints in boolean formulas and
check the constraints by an external SAT solver. Our implementation tries two possible
applications of the Theorem to show NJ(s, t), namely that (1) [[s]] > [[t]], [[l]]σ ≥ [[r]]σ for
l → r ∈ Unj(R, t) and [[l]]σ ≤ [[r]]σ for l → r ∈ Unj(R, s), and (2) [[t]] > [[s]], [[l]]σ ≥ [[r]]σ for
l → r ∈ Unj(R, s) and [[l]]σ ≤ [[r]]σ for l → r ∈ Unj(R, t).

Th. 10 (rpo) Theorem 10 applied for recursive path order with argument filtering. Similar
to the cases Cor. 5 (k = 2, 3) and Th. 8 (poly), we encode the constraints in boolean
formulas and check the constraints by an external SAT solver. We approximate the set
of usable rules Unj(R

π, sπ) first by S = Unj(R, s) before encoding and then U(Sπ, sπ), the
set of usable rules for dependency pairs [2], at the time of encoding (and similarly for
Unj(R

π, tπ)).

Candidates for the non-joinability test are generated from the input TRS R like this: (1)
first compute the one-step unfolding R′ of R [8] and then (2) compute critical pairs of R∪R′,
and finally, (3) all critical pairs are sorted w.r.t. term size and at most 100 crucial pairs are
considered for candidates for non-joinability test.

Experiments Experiments have been performed on our implementation and the state-of-the-
art confluence provers ACP [1] (ver. 0.31), CSI [9] (ver. 0.2) and Saigawa [6] (ver. 1.4). Each test
is performed on a PC with one 2.50GHz CPU and 4G memory; the timeout is set to 60 seconds.
We have tested a collection of 23 new examples which includes Examples 6, 7, 11 and their
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Table 1: Summary of experiments

ACP CSI Saigawa Cor. 5 Cor. 5 Th. 8 Th. 10 all
(k = 2) (k = 3) (poly) (rpo)

Example 6 × × × X X X X X

Example 7 × × × X X × × X

Example 11 × × × × × × X X

23 examples (success) 9 12 3 16 16 14 19 21
23 examples (time in sec.) 2 2107 228 25 293 206 26 84
35 examples (success) 18 21 17 17 16 17 17 16
35 examples (time in sec.) 71 485 482 318 562 446 106 761

variants, and a collection of 35 examples from the 1st Confluence Competition (CoCo 2012)
that were not proved to be confluent by any of participating provers.

A summary of the experiments is shown in Table 1. The column below all denotes
the result for the combination of the four instances. All provers ACP, CSI and Saigawa fail
on Examples 6, 7 and 11. For the collection of 23 new examples, the following are ob-
served: Cor. 5 (k = 2) and Cor. 5 (k = 3) succeed at the same examples. Examples
handled by Th. 8 (poly) are also handled by Th. 10 (rpo) and also by Cor. 5. Exam-
ples handled by any of the provers ACP, CSI and Saigawa also are handled by all. For the
collection of 35 examples from CoCo 2012, the following are observed: All instances suc-
ceed on the same examples, except for Cor. 5 (k = 3), in which one timeouts. The num-
bers of examples on which ACP, CSI and Saigawa succeed but all fails are 4, 5, 3, respec-
tively. Finally, the running time is observed like this: Th. 10 (rpo) < Cor. 5 (k = 2) ≪
Th. 8 (poly) ≪ Cor. 5 (k = 3). All details of the experiments are available on the webpage:
http://www.nue.riec.tohoku.ac.jp/tools/acp/experiments/iwc13/all.html.
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[8] É. Payet. Loop detection in term rewriting using eliminating unfoldings. Theoretical Computer

Science, 403:307–327, 2008.

[9] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. of 23rd CADE,
volume 6803 of LNAI, pages 499–505. Springer-Verlag, 2011.

[10] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae,
24:89–105, 1995.

5


	Introduction
	Preliminaries
	Proving Non-Joinability by Interpretation
	Proving Non-Joinability by Ordering
	Implementations and Experiments

