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Abstract

Huet and Lang (1978) presented a framework of automated program transformation based on
lambda calculus in which programs are transformed according to a given program transforma-
tion template. They introduced a second-order matching algorithm of simply-typed lambda
calculus to verify whether the input program matches the template. They also showed how to
validate the correctness of the program transformation using the denotational semantics.

We propose in this thesis a framework of program transformation by templates based on
term rewriting. In our new framework, programs are given by term rewriting systems. To
automate our program transformation, we introduce a term pattern matching problem and
present a sound and complete algorithm that solves this problem.

We also discuss how to validate the correctness of program transformation in our framework.
We introduce a notion of correct templates and a simple method to construct such templates
without explicit use of induction. We then show that in any program transformation by correct
templates the correctness of the transformation can be verified automatically. In our framework
the correctness of the program transformation is discussed based on the operational semantics.
This is a sharp contrast to Huet and Lang’s framework.

RAPT (Rewriting-based Automated Program Transformation system), which implements
our framework is reported in this thesis. RAPT transforms input many-sorted TRSs according
to specified correct templates and verifies its correctness automatically. We explain each phase
within RAPT and report several experiments of program transformations obtained from RAPT.

To enhance the variety of program transformation, it is important to introduce new trans-
formation templates. Up to our knowledge, however, few works discuss about the construction
of transformation templates. We then propose a method that automatically constructs trans-
formation templates from similar program transformations. The key idea of our method is a
second-order generalization, which is an extension of Plotkin’s first-order generalization (1969).
We give a second-order generalization algorithm and prove the soundness of the algorithm. We
then report about an implementation of the generalization procedure and an experiment on the
construction of transformation templates.
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Chapter 1

Introduction

1.1 Program Transformation by Templates

Automatically transforming given programs to optimize efficiency is one of the most fascinating
techniques for programming languages [18, 19]. Several techniques for transforming functional
programming languages have been developed [3, 12, 26]. Huet and Lang [12] presented a frame-
work of automated program transformation in which programs are transformed according to a
given program transformation template, where the template consists of program schemas for
input and output programs, and a set of equations which the input (and output) programs
must validate to guarantee the correctness of transformation. The programs and program
schemas in their framework are given by second-order simply-typed lambda terms. They gave a
second-order matching algorithm to verify whether a template could be applied to an input pro-
gram. They also showed how to validate the correctness of transformations using denotational
semantics.

After Huet and Lang’s pioneering work, Curien et al. [6] provided an improved matching al-
gorithm using top-down matching method. Yokoyama et al. [27] presented sufficient conditions
to have at most one solution and a deterministic algorithm to find such a solution. de Moor
and Sittampalam [8] presented a matching algorithm that could also be applied to third-order
matching problems. The programs in all of these algorithms are represented by lambda terms
and higher-order substitutions are achieved by the β-reduction of lambda calculus. However, in
contrast to this successive work on matching algorithms, the formal verification component of
the correctness of transformation has been neglected within the framework of program trans-
formation using templates. Thus, the verification of the correctness of transformation in this
framework still depends on Huet and Lang’s original technique based on denotational semantics.
In their framework, the correctness of transformations is often verified using several inductive
properties of programs (e.g. associativity of addition) as hypotheses. It is known that one may
need to verify different hypotheses to guarantee the correctness of each transformation. To
the best of our knowledge, there exists no framework of program transformation by templates
equipping automated verification of hypotheses to guarantee the correctness of transformations

1.2 Term Rewriting System

Term rewriting systems (TRSs, for short) are used for computational models of functional
programming languages[1, 23]. TRSs consist sets of rewrite rules of terms. Let us consider an
example of TRS. Formal definitions of TRSs appear in next chapter. The following TRS Radd
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represents a program which computes additions of two input natural numbers.

Radd

{

+(0, x) →x
+(s(x), y)→ s(+(x, y))

Note that, natural numbers 0, 1, 2, · · · are expressed as 0, s(0), s(s(0)), · · · , respectively.
The computation by TRSs is carried out by the reduction. For example, an addition of 2

and 3 is computed by rewriting a term +(s(s(0)), s(s(s(0)))) using the TRS Radd as follows:

+(s(s(0)), s(s(s(0)))) →Radd
s(+(s(0), s(s(s(0)))))

→Radd
s(s(+(0, s(s(s(0))))))

→Radd
s(s(s(s(s(0)))))

Since there exist several automated theorem proving methods based on term rewriting for
verifying inductive properties of programs[21, 25], one may expect to construct a framework of
TRS transformation by templates with automated verification of the correctness of transfor-
mations by applying such automated theorem proving techniques. However, no framework of
TRS transformation using pattern matching is known.

1.3 Overview of this Thesis

We propose a framework of program transformation by templates in this thesis based on term
rewriting. Applying automated theorem proving techniques of term rewriting, the correctness
of transformations are verified automatically in our framework. Chapter 2 recalls basic notions
about term rewriting which are used in this thesis.

In our framework, a transformation template (template, for short) consists of two term
rewriting system patterns (TRS patterns, for short)—an input part and an output part of the
template. A TRS is transformed according to a template, first by performing the pattern
matching between the given TRS and the input part of the template, and then applying the
result of pattern matching to the output part of the template (Figure 1.1). In Chapter 3, we
explain the detail of our framework through motivating examples. We also introduce the notion
of term homomorphisms to describe how a TRS pattern matches a concrete TRS.

R P

transformation pattern

R′ P ′

ϕ

matching

ϕ

instantiation

Figure 1.1: Overview of TRS transformation by templates

Chapter 4 discusses about verifying the correctness of transformations. In contrast to exist-
ing works, the correctness of transformations is discussed based on operational semantics. To
guarantee the correctness of transformation, we introduce the notion of correct templates and
a simple method of constructing such templates without explicit use of induction. We also give
sufficient conditions to guarantee the correctness of transformations by correct templates. We

2



then show that the correctness of transformation can be verified automatically for some class
of TRSs.

A key part of our procedure of TRS transformation using templates— the TRS pattern
matching problem—is solved using the term pattern matching algorithm Match introduced in
Chapter 5. We then show termination, soundness and completeness of Match. We also extend
Match to solve TRS pattern matching problems.

In Chapter 6, we explain about RAPT (Rewriting-based Automated Program Transformation
system), which implements our framework and reports several experiments using RAPT.

In order to apply our framework of program transformation, one have to construct transfor-
mation templates beforehand. Since transformation templates are often constructed by gener-
alizing similar transformations, a generalization procedure can help to construct transformation
templates automatically. Therefore, we propose 2nd-order generalization algorithm to construct
transformation templates automatically in Chapter 7.

Chapter 8 concludes this thesis and reports differences against existing works.
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Chapter 2

Term Rewriting System

This chapter introduces basic notions of term rewriting systems used in this thesis based on [1].
Let F and V be sets of function symbols and variables , respectively. We assume that these

sets are mutually disjoint. Any function symbol f ∈ F has its arity (denoted by arity(f)). We
define the set T(F , V ) of terms inductively by:

1. V ⊆ T(F , V ); and

2. f(t1, . . . , tn) ∈ T(F , V ) for any f ∈ F such that arity(f) = n and t1, . . . , tn ∈ T(F , V ).

A term without variables is a ground term. The set of ground terms is denoted by T(F ). For
a term s = f(s1, . . . , sn), the root symbol of s is f (denoted by root(s) = f).

A substitution θ is a mapping from V to T(F , V ). A substitution θ is extended to a mapping

θ̂ over terms T(F , V ) like this:

1. θ̂(x) = θ(x) if x ∈ V ,

2. θ̂(f(s1, . . . , sn)) = f(θ̂(s1), . . . , θ̂(sn)).

We usually identify θ̂ and θ. We denote sθ instead of θ(s). The domain of a substitution θ
(denoted by dom(θ)) is defined by dom(θ) = {x ∈ V | x 6= θ(x)}.

Consider special (indexed) constants �i (i ≥ 1) called holes such that �i /∈ F . An (indexed)
context C is an element of T(F ∪ {�i | i ≥ 1}, V ). C[s1, . . . , sn] is the result of C replacing
�i by s1, . . . , sn from left to right. C〈s1, . . . , sn〉 is the term obtained by replacing each �i in
C with si (indexed replacement). A context C with precisely one hole is denoted by C[ ]. The
set of contexts is denoted by T�(F , V ); its subset T(F ∪ {�i | 1 ≤ i ≤ n}, V ) is denoted by
T�

n (F , V ). T�(F ) and T�
n (F ) are defined in the same way as T(F ).

Example 2.1 (Context). Let C1 = f(�1), C2 = g(�2,�1), and C3 = g(�2, g(�1,�1)) be
contexts. Here, we get

C1[a] = f(a)
C1〈a, b〉 = f(a)
C2[a, b] = g(a, b)
C2〈a, b〉 = g(b, a)
C3[a, b, c]= g(a, g(b, c))
C3〈a, b〉 = g(b, g(a, a))
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A pair 〈l, r〉 of terms is a rewrite rule if l /∈ V and V (l) ⊇ V (r). We usually write the
rewrite rule 〈l, r〉 as l → r. A term rewriting system (TRS for short) is a set of rewrite rules.
As usual, we always assume that variables in each rewrite rule are disjoint, although the same
variable name may be used. A term s reduces to a term t by R (denoted by s →R t) if there
exists a context C[ ], a substitution θ and a rewrite rule l → r ∈ R such that s = C[lθ] and
t = C[rθ].

Example 2.2 (Summation). The following TRS Rsum represents a program which computes
summations of input lists of natural numbers.

Rsum















sum([ ]) → 0

sum(x1:y1) → +(x1, sum(y1))
+(0, x2) → x2

+(s(x3), y3) → s(+(x3, y3))

Note that, natural numbers 0, 1, 2, · · · are expressed as 0, s(0), s(s(0)), · · · , respectively.

The reflexive transitive closure of→R is denoted by
∗
→R, the transitive closure by

+
→R, and

the equivalence closure by
∗
↔R. A term s is in normal form of a TRS R when s →R t for no

term t. NF(R) denotes the set of terms in normal form of a TRS R.
A TRSR is terminating, or strongly normalizing (SN(R)) if there exists no infinite reduction

s1 →R s2 →R s3 →R · · · . A binary relation > is well-founded if there exists no infinite sequence
such that a1 > a2 > · · · . A binary relation > of terms is closed under contexts if s > t implies
C[s] > C[t], for any terms s and t and contexts C[ ]. A binary relation > of terms is closed
under substitutions if s > t implies sθ > tθ, for any terms s and t and substitutions θ. A strict
order is a transitive and irreflexive relation. A reduction order is a well-founded strict order
which is closed under contexts and substitutions. The following theorem shows the motivation
for introducing reduction orders:

Theorem 2.3. A TRS R is terminating iff there exists a reduction order > such that l > r
for all l→ r ∈ R.

Proof. 1. Assume R is terminating. It is obvious that
+
→R is a reduction order and l

+
→R r

for all l → r ∈ R.

2. Since > is a reduction order, for any l → r ∈ R, l > r implies C[lθ] > C[rθ], for any
contexts C[ ] and substitutions θ. Thus, s1 →R s2 implies s1 > s2. Since > is well-
founded, there exists no infinite reduction s1 →R s2 →R s3 →R · · · .

Definition 2.4 (lexicographic path order). Let F be a finite set of function symbols and >
be a strict order on F . The lexicographic path order >lpo on T(F , V ) induced by > is defined

as follows:
s >lpo t iff

1. t ∈ V (s) and s 6= t, or

2. s = f(s1, · · · , sm), t = g(t1, · · · , tn), and

(a) there exists i, 1 ≤ i ≤ m, with si >lpo t, or

(b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
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(c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i, 1 ≤ i ≤ m, such that

s1 = t1, · · · , si−1 = ti−1 and si >lpo ti.

Theorem 2.5. For any strict order on F , the induced lexicographic path order >lpo is a

reduction order on T(F , V ).

A TRS R is confluent, or has the Church-Rosser property, (denoted by CR(R)) if, for any

term s, s1, s2, s
∗
→R s1 and s

∗
→R s2 imply that there exists a term t such that s1

∗
→R t and

s2
∗
→R t. Note that CR(R), s, t ∈ NF(R) and s

∗
↔R t imply s = t. A TRS R is locally

confluent , or has the weakly Church-Rosser property, (denoted by WCR(R)) if, for any term

s, s1, s2, s→R s1 and s→R s2 imply that there exists a term t such that s1
∗
→R t and s2

∗
→R t.

The following lemma is a variant of Newman’s Lemma [16].

Lemma 2.6. A terminating TRS is confluent if it is locally confluent.

For substitutions σ and θ, we say σ is more general than θ if there exists a substitution σ′

such that θ = σ′ ◦ σ. In this case, we write σ . θ. Terms s and t are unifiable if there exists
substitution σ such that sσ = tσ. In this case σ is a unifier of s and t. A unifier σ of terms s
and t is most general unifier if σ is more general than any unifier of s and t. A most general
unifier of s and t is denoted as mgu(s, t).

Definition 2.7. Let l1 → r1 and l2 → r2 be rewrite rules whose variables are disjoint (i.e.
V (l1) ∩ V (l2) = ∅). If there exists a context C[ ] such that l1 = C[l′1] where l′1 is not a variable
and l′1 and l2 are unifiable, we say l1 overlaps l2 and a pair of terms 〈r1σ, C[r2]σ〉 is called a
critical pair where σ is a most general unifier of l′1 and l2.

The critical pairs of a TRS R are the critical pairs between any two rules whose variables
are renamed. The set of critical pairs of a TRS R is denoted by CP(R). We say that a TRS
R1 overlaps a TRS R2 if there exist rewrite rules l1 → r1 ∈ R1 and l2 → r2 ∈ R2 such that
l1 overlaps l2. A critical pair 〈s, t〉 of a TRS R is joinable if there exists a term u such that

s
∗
→R u and t

∗
→R u.

The following is called Critical Pair Theorem, which is brought by Knuth and Bendix[14].

Theorem 2.8. A TRS is locally confluent iff all its critical pairs are joinable.

We obtain the following theorem from Critical Pair Theorem and Lemma 2.6.

Corollary 2.9. A terminating TRS is confluent iff all its critical pairs are joinable

Critical Pair Theorem can apply only terminating TRSs to show their confluence and con-
fluence is undecidable in general. It is known that there are sufficient conditions to guarantee
confluence of TRSs. Orthogonality is one of such sufficient conditions. A linear term is a term
in which any variable appears at most once. For any term s, the set of function symbols and
variables in s are denoted by F (s) and V (s), respectively. A rewrite rule l → r is left-linear
when l is linear; a TRS R is left-linear if every rewrite rule in R is left-linear. A TRS is orthog-
onal if it is left-linear and has no critical pairs. The following theorem shows that orthogonality
is a sufficient condition to show confluence.

Theorem 2.10. If a TRS is orthogonal then it is confluent.

We note that Theorem 2.10 can apply nonterminating TRSs.
Modularity is one of effective methods to show several properties. Toyama showed that

confluence has modularity[24, 25].

6



Theorem 2.11. Let R1 and R2 be left-linear TRSs such that each TRS does not overlap
another. CR(R1) ∧ CR(R2) implies CR(R1 ∪R2).

We assume that the set F of function symbols is divided into two disjoint sets—the set Fd

of defined function symbols and the set Fc of constructor symbols. Elements of T(Fc, V ) are
called constructor terms. A rewrite rule l → r is a constructor rule if l = f(l1, . . . , ln) for some
f ∈ Fd and l1, . . . , ln ∈ T(Fc, V ). A TRS R is a constructor system (CS for short) if every
rewrite rule is a constructor rule.

Definition 2.12. Suppose Fc ⊆ G ⊆ F . A TRS R is sufficiently complete for G (SC(R, G ))

when for any ground term s ∈ T(G ) there exists t ∈ T(Fc) such that s
∗
→R t.

A TRS R is quasi-reducible if for any f ∈ D (arity(f) = n) and s1, . . . , sn ∈ T (C )
f(s1, . . . , sn) is not a normal form of R. Note that if a TRS R is sufficient complete then
R is quasi-reducible.

Proposition 2.13. SN(R) and QR(R, G ) imply SC(R, G ).

Let S be a set of sorts . V β denote a set of variables whose sorts are β. Fα1×···×αn→β

denotes the set of function symbols which take arguments of sorts α1, · · · , αn to values of sorts
β. We note that for any function symbol f , arity(f) = n implies f ∈ Fα1×···×αn→β for some
α1, · · · , αn, β ∈ S. We now define the set Tβ(F , V ) of many-sorted terms whose sorts are β
inductively by:

1. V β ⊆ Tβ(F , V )

2. f(t1, · · · , tn) ∈ Tβ(F , V ) for any f ∈ Fα1×···×αn→β and ti ∈ Tαi(F , V ) for all i (1 ≤
i ≤ n).

A TRS R is called a many-sorted TRS if for any l→ r ∈ R, l ∈ Tβ(F , V ) iff r ∈ Tβ(F , V )
for some β ∈ S. We define SN(R), CR(R), SC(R, G ) and QR(R, G )

An equation is a pair of terms; we usually write an equation l ≈ r. For a set E of equations,
we write s↔E t if there exists a context C[ ], a substitution θ, and an equation l ≈ r ∈ E such
that s = C[lθ] and t = C[rθ] or s = C[rθ] and t = C[lθ]. The reflexive transitive closure of

↔E is denoted by
∗
↔E . A substitution θ is ground on G if θ(x) ∈ T(G ) for any x ∈ dom(θ).

An equation s ≈ t is an inductive consequence of R for G (R, G `ind s ≈ t) when for any

ground substitution θg on G such that V (s) ∪ V (t) ⊆ dom(θg), sθg
∗
↔R tθg holds. For a set E

of equations, we write R, G `ind E when R, G `ind s ≈ t for any s ≈ t ∈ E .
The equivalence of two TRSs are defined as follows:

Definition 2.14. Let G be a set of function symbols such that Fc ⊆ G ⊆ F . Two TRSs, R
and R′, are said to be equivalent for G (notation, R 'G R′), if for any ground term s ∈ T(G )

and ground constructor term t ∈ T(Fc), s
∗
→R t iff s

∗
→R′ t holds.

At this juncture, we need to make a short remark about the definition of the equivalence
of TRSs. In a program transformation from R to R′, one cannot generally expect s

∗
↔R t iff

s
∗
↔R′ t for all ground terms s ∈ T(F ) and ground constructor term t ∈ T(Fc). This is because

one TRS may use some subfunctions that the other may not have. This is why the equivalence
of TRSs is defined with respect to a set G of function symbols. Intuitively, the functions in G

are those originally required to compute by the TRSs in comparison.
Although whether two TRSs are equivalent cannot generally be decided, it is known that two

TRSs are equivalent when there exists an equivalent transformation from one to the other [25]
for some restricted class of TRSs. We simplify and improve this technique for our framework
in Chapter 4.
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Chapter 3

Program Transformation by

Templates

In this chapter, we formalize the framework of program transformation by templates based on
term rewriting. We give a notion of transformation templates within our framework. We then
introduce a notion of term homomorphism to specify how to apply transformation templates
to TRSs. We also show that term homomorphisms preserve reductions.

3.1 Motivating Example

This section introduces our framework of program transformation in which programs are for-
malized by TRSs. Let us start with some motivating examples.

Example 3.1. A program that computes the summation of a list is specified by the following
TRS Rsum, in which the natural numbers 0, 1, 2, . . . are expressed as 0, s(0), s(s(0)), . . ..

Rsum















sum([ ]) → 0

sum(x1:y1) → +(x1, sum(y1))
+(0, x2) → x2

+(s(x3), y3) → s(+(x3, y3))

ThisRsum computes the summation of a list using a recursive call. For instance, sum(1:(2:(3:(4:(5:[ ])))
∗
→Rsum

+(1, +(2, +(3, +(4, +(5, sum([ ]))))
∗
→Rsum

15.
Using the well-known transformation from the recursive form to the iterative (tail-recursive)

form, the following different TRS R′
sum for the list summation program is obtained:

R′
sum























sum(x4) → sum1(x4, 0)
sum1([ ], x5) →x5

sum1(x6:y6, z6)→ sum1(y6, +(z6, x6))
+(0, x7) →x7

+(s(x8), y8) → s(+(x8, y8))

R′
sum computes the summation of a list more efficiently without the recursion. The equality

of the two programs is found using the associativity of the function + and the property +(0, n) =
+(n, 0).

8



Example 3.2. Let us consider another example of program transformation. A program that
computes the concatenation of a list of lists is specified by the following TRS Rcat.

Rcat















cat([ ]) → [ ]
cat(x1:y1) → app(x1, cat(y1))
app([ ], x2) → x2

app(x3:y3, z3) → x3:app(y3, z3)

For example, we have cat([[1, 2], [3], [4, 5]])
∗
→Rcat

[1, 2, 3, 4, 5]. Similarly to Example 3.1, the
transformation from the recursive form to the iterative form gives a more efficient TRS R′

cat as
follows.

R′
cat























cat(x4) → cat1(x4, [ ])
cat1([ ], x5) →x5

cat1(x6:y6, z6)→ cat1(y6, app(z6, x6))
app([ ], x7) →x7

app(x8:y8, z8) →x8:app(y8, z8)

Note that the associativity of the function app and the property app([ ], as) = app(as, [ ])
hold. Thus, the equality of the two programs is shown similarly.

Example 3.3. One can easily observe that these two transformations in the previous examples
can be generalized to a more abstract “transformation template”: the TRS pattern P

P















f(a) → b

f(c(u1, v1)) → g(u1, f(v1))
g(b, u2) → u2

g(d(u3, v3), w3) → d(u3, g(v3, w3))

is transformed to the TRS pattern P ′

P ′























f(u4) → f1(u4, b)
f1(a, u5) → u5

f1(c(u6, v6), w6) → f1(v6, g(w6, u6))
g(b, u7) → u7

g(d(u8, v8), w8) → d(u8, g(v8, w8)).

All the function symbols f, a, b, g, · · · occurring in the TRS patterns P and P ′ are pattern
variables. If we match the TRS pattern P to a concrete TRS R with an instantiation for
these pattern variables, we obtain a more efficient TRS R′ by applying this instantiation to
the pattern P ′. The equality of Rsum and R′

sum (Rcat and R′
cat) is guaranteed when the

instantiation satisfies the following equations, called a hypothesis:

H

{

g(b, u1) ≈ g(u1, b)
g(g(u2, v2), w2) ≈ g(u2, g(v2, w2)).

We are now going to introduce a formal definition of a “transformation template”.

Definition 3.4. Let X be a set of pattern variables (disjoint from F and V ) where each
pattern variable p ∈ X has its arity (denoted by arity(p)). A term pattern (or just pattern)
is a term in T(F ∪ X , V ). A TRS pattern P is a set of rewriting rules over patterns. A
hypothesis H is a set of equations over patterns. A transformation template (or just template)
is a triple 〈P ,P ′,H〉 of two TRS patterns P, P ′ and a hypothesis H. For patterns s, t, we define
s→P t, s↔H t, etc. similarly for terms.
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3.2 Term Homomorphism

To achieve program transformation using templates, we need a mechanism to specify how
a template is applied to a concrete TRS. For this, we use a variant of the notion of tree
homomorphism [5]—we call this a term homomorphism.

Definition 3.5. Let ϕ be a mapping from X ∪ V to T �(X ∪ F , V ). We say ϕ is a term
homomorphism if the following conditions are satisfied:

1. ϕ(p) ∈ T �

arity(p)(F ) for any p ∈ domX (ϕ),

2. ϕ(x) ∈ V for any x ∈ domV (ϕ),

3. ϕ is injective on domV (ϕ), i.e., for any x, y ∈ domV (ϕ), if x 6= y then ϕ(x) 6= ϕ(y),

where domX (ϕ) = {p ∈ X | ϕ(p) 6= p(�1, . . . ,�arity(p))} and domV (ϕ) = {x ∈ V | ϕ(x) 6=
x}. A term homomorphism ϕ is extended to a mapping over T(F ∪X , V ) as follows:

ϕ(s) =























ϕ(x) if s = x ∈ V

f(ϕ(s1), . . . , ϕ(sn))
if s = f(s1, . . . , sn), f ∈ F

ϕ(p)〈ϕ(s1), . . . , ϕ(sn)〉
if s = p(s1, . . . , sn), p ∈X .

Note that ϕ(s) is a pattern for any pattern s and term homomorphism ϕ. For a term
homomorphism ϕ and a rewrite rule l → r (an equation s ≈ t) over patterns, ϕ(l → r)
(ϕ(s ≈ t)) is defined by ϕ(l)→ ϕ(r) (resp. ϕ(s) ≈ ϕ(t)). For a TRS pattern P and a hypothesis
H, ϕ(P) and ϕ(H) are defined by ϕ(P) = {ϕ(l → r) | l → r ∈ P} and ϕ(H) = {ϕ(s ≈ t) | s ≈
t ∈ H}, respectively.

If ϕ(P) = R for some term homomorphism ϕ, we assume V (P)∩V (R) = ∅ without loss of
generality.

We are now going to demonstrate that any term homomorphism preserves reduction. This
property of term homomorphisms is proved in a straightforward manner using the injectivity of
term homomorphisms. To show this, we extend term homomorphisms ϕ for substitution θ like
this: ϕ(θ)(x) = ϕ(θ(ϕ−1(x))), where ϕ−1(x) = y if y ∈ domV (ϕ), and ϕ(y) = x; ϕ−1(x) = x
otherwise. Note that since term homomorphism ϕ is injective on domV (ϕ), one can uniquely
define the mapping ϕ−1.

Lemma 3.6. Let t be a pattern, θ a substitution, and ϕ a term homomorphism such that
V (t) ⊆ domV (ϕ). Then, ϕ(tθ) = ϕ(t)ϕ(θ).

(Proof) The proof proceeds by induction on t.

1. t = x ∈ V .

Let ϕ(x) = y. Then,
ϕ(xθ) = ϕ(θ(ϕ−1(y)))

= ϕ(θ)(y)
= ϕ(x)ϕ(θ).

2. t = f(t1, . . . , tn) with f ∈ F .
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Then,

ϕ(tθ) = ϕ(f(t1θ, . . . , tnθ))

= f(ϕ(t1θ), . . . , ϕ(tnθ))

= f(ϕ(t1)ϕ(θ), . . . , ϕ(tn)ϕ(θ))

= f(ϕ(t1), . . . , ϕ(tn))ϕ(θ)

= ϕ(f(t1, . . . , tn))ϕ(θ)

= ϕ(t)ϕ(θ).

3. t = p(t1, . . . , tn) with p ∈ X .

Then,
ϕ(tθ)

= ϕ(p(t1, . . . , tn)θ)
= ϕ(p(t1θ, . . . , tnθ))
= ϕ(p)〈ϕ(t1θ), . . . , ϕ(tnθ)〉
= ϕ(p)〈ϕ(t1)ϕ(θ), . . . , ϕ(tn)ϕ(θ)〉
= (ϕ(p)〈ϕ(t1), . . . , ϕ(tn)〉)ϕ(θ)
= (ϕ(p(t1, . . . , tn))ϕ(θ)
= ϕ(t)ϕ(θ).

(Note that V (ϕ(p)) = ∅.) �

Lemma 3.7. Let t be a pattern, C[ ] a context, and ϕ a term homomorphism. Then, ϕ(C[t]) =
ϕ(C)[ϕ(t), . . . , ϕ(t)].

(Proof) The proof proceeds by induction on the size of C[ ].

1. C[ ] = �.

Trivial.

2. C[ ] = f(s1, . . . , C
′[ ], . . . , sn) with f ∈ F . Then,

ϕ(f(s1, . . . , C
′[t], . . . , sn))

= f(ϕ(s1), . . . , ϕ(C′[t]), . . . , ϕ(sn)))
= f(ϕ(s1), . . . , ϕ(C′)[ϕ(t), . . . , ϕ(t)],

. . . , ϕ(sn)))
= f(ϕ(s1), . . . , ϕ(C′), . . . , ϕ(sn))

[ϕ(t), . . . , ϕ(t)]
= ϕ(C)[ϕ(t), . . . , ϕ(t)]

3. C[ ] = p(s1, . . . , sn) with si = C′[ ] and p ∈ X .

Then,
ϕ(p(s1, . . . , C

′[t], . . . , sn))
= ϕ(p)〈ϕ(s1), . . . , ϕ(C′[t]), . . . , ϕ(sn)〉
= ϕ(p)〈ϕ(s1), . . . ,

ϕ(C′)[ϕ(t), . . . , ϕ(t)], . . . , ϕ(sn)〉
= (ϕ(p)〈ϕ(s1), . . . , ϕ(C′), . . . , ϕ(sn)〉)

[ϕ(t), . . . , ϕ(t)]
= ϕ(p(s1, . . . , C

′, . . . , sn))
[ϕ(t), . . . , ϕ(t)]

= ϕ(C)[ϕ(t), . . . , ϕ(t)].
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Proposition 3.8. Let P be a TRS pattern, R a TRS, H a hypothesis, E a set of equations,
and ϕ a term homomorphism such that ϕ(P) = R (ϕ(H) = E). If s →P t (s ↔H t), then we
have ϕ(s)→R ϕ(t) (resp. ϕ(s)↔E ϕ(t)).

(Proof) Suppose s→P t. Then, there exists a context C[ ], a substitution θ, and a rewrite
rule pattern l → r ∈ P such that s = C[lθ] and r = C[rθ]. Also, V (l), V (r) ⊆ dom(ϕ) by
V (P) ∩ V (R). Then,

ϕ(s) = ϕ(C[lθ])
= ϕ(C)[ϕ(lθ), . . . , ϕ(lθ)]

(by Lemma 3.7)
= ϕ(C)[ϕ(l)ϕ(θ), . . . , ϕ(l)ϕ(θ)]

(by Lemma 3.6)
∗
→R ϕ(C)[ϕ(r)ϕ(θ), . . . , ϕ(r)ϕ(θ)]

= ϕ(C)[ϕ(rθ), . . . , ϕ(rθ)]
(by Lemma 3.6)

= ϕ(C[rθ])(by Lemma 3.7)
= ϕ(t).

It can be shown that s↔H t implies ϕ(s)↔E ϕ(t) in a similar way. �

The TRS transformation by a template is defined as follows.

Definition 3.9. Let 〈P ,P ′,H〉 be a template. A TRS R is transformed into R′ by 〈P ,P ′,H〉
if there exists a term homomorphism ϕ such that R = ϕ(P) ∪ Rcom and R′ = ϕ(P ′) ∪ Rcom

for some TRS Rcom.

Note that the hypothesis H is not used in the definition of the transformation, but it will
be needed later when we discuss the correctness of the transformation.

Example 3.10. Let Rsum, R′
sum be the TRSs in Example 3.1, and 〈P ,P ′,H〉 the template

given in Example 3.3. Then, the following term homomorphism ϕ satisfies Rsum = ϕ(P) and
R′

sum = ϕ(P ′).

ϕ =







































f 7→sum(�1), u1 7→x1, u6 7→x6,
g 7→+(�1,�2), v1 7→y1, v6 7→y6,
f1 7→sum1(�1,�2), u2 7→x2, w6 7→z6,
a 7→[ ], v3 7→x3, u7 7→x7,
b 7→0, w3 7→y3, v8 7→y8,
c 7→�1:�2, u4 7→x4, w8 7→z8

d 7→s(�2), u5 7→x5,







































Thus, the TRS Rsum is transformed into R′
sum by 〈P ,P ′,H〉 where Rcom = ∅.

Example 3.11. Let Rcat, R′
cat be the TRSs in Example 3.2, and 〈P ,P ′,H〉 the template

given in Example 3.3. Then, the following term homomorphism ϕ satisfies Rcat = ϕ(P) and
R′

cat = ϕ(P ′).
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ϕ =















































f 7→cat(�1), u1 7→x1, u6 7→x6,
g 7→app(�1,�2), v1 7→y1, v6 7→y6,
f1 7→cat1(�1,�2), u2 7→x2, w6 7→z6,
a 7→[ ], v3 7→y3, u7 7→x7,
b 7→[ ], u3 7→x3, u8 7→x8,
c 7→�1:�2, w3 7→z3, v8 7→y8,
d 7→�1:�2, u4 7→x4, w8 7→z8

u5 7→x5,















































Thus, the TRS Rcat is transformed into R′
cat by 〈P ,P ′,H〉 where Rcom = ∅.

Readers can easily observe from these examples that Rsum and Rcat are respectively trans-
formed into R′

sum and R′
cat in the same way. A question naturally arises from this observation:

does the template guarantee the correctness of all the transformations done by that template?
In the next chapter, we will discuss the criteria for the templates for the correct transformation
and try to give a definite answer to this question.

3.3 Summary

We proposed a framework of program transformation by templates in this chapter. Programs
are represented by TRSs. A transformation templates is defined as a triple 〈P ,P ′,H〉 of two
TRS patterns P and P ′ which are TRSs including pattern variables and hypothesis H. In
order to specify how a template is applied to a concrete TRS, we introduced a notion of term
homomorphisms. We then show that term homomorphisms preserve reductions (Proposition
3.8). The definition of TRS transformations by templates was given in Definition 3.9.
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Chapter 4

Correctness of Transformations

Verifying the correctness is one of important problems for program transformations. The cor-
rectness of transformations is formalized as the equality of input and output TRSs in our
framework. Equivalent transformation of TRSs proposed by Toyama[25] is one of techniques
to verify the equality of two TRSs. In this chapter, we simplify and improve this technique to
specialize in our framework. We then propose a notion of correct templates which guarantee the
correctness of transformation of restricted TRSs. The method of constructing correct templates
is given by lifting up the notion of equivalent transformation of TRSs to the template level.

4.1 Equivalent Transformation of TRS

This section discusses how the correctness of program transformation using templates is vali-
dated, i.e., when the equivalence of the input and output programs of program transformations
are guaranteed. Intuitively, a program transformation from one program to another is correct
if these programs compute the same answer for any input data.

Although whether two TRSs are equivalent cannot generally be decided, it is known that
two TRSs are equivalent when there exists an equivalent transformation from one to the other
[25] for some restricted class of TRSs. Let us simplify and improve this technique for our
framework.

For a set G of function symbols, we speak of a TRS R (or a set E of equations) over G when
all rewrite rules (resp. equations) consist of terms in T(G , V ).

Definition 4.1. Let R0 be a left-linear CS over F0 and E be a set of equations over F0. An
equivalent transformation sequence under E is a sequenceR0, . . . ,Rn of TRSs (over F0, . . . , Fn,
respectively) such that Rk+1 is obtained from Rk by applying one of the following inference rules:

(I) Introduction
Rk+1 = Rk ∪ {f(x1, . . . , xn)→ r}

provided that f(x1, . . . , xn)→ r is a left-linear constructor rewrite rule such that f /∈ Fk

and r ∈ T(Fk, V ). We put Fk+1 = Fk ∪ {f}.

(A) Addition
Rk+1 = Rk ∪ {l→ r}

provided l
∗
↔Rk∪E r holds.
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(E) Elimination
Rk+1 = Rk \ {l→ r}

When this is the case, we write Rk ⇒ Rk+1. (In the Addition and Elimination rules, Fk+1

can be any set of function symbols such that Fk+1 ⊆ Fk provided that Rk+1 is a TRS over

Fk+1.) The reflexive transitive closure of ⇒ is denoted by
∗
⇒. We indicate the rule of ⇒ by

⇒
I
, ⇒

A
, or ⇒

E
. Finally, we say there exists an equivalent transformation from R to R′ under E

when there exits an equivalent transformation sequence R
∗
⇒
I
·

∗
⇒
A
·

∗
⇒
E
R′ under E.

Differences against [25] are listed as follows:

1. Orders of applying inference rules are fixed (Introduction → Addition → Elimination).

2. Some equations can be used in the Addition rule.

Theorem 4.2. Let G and G ′ be sets of function symbols such that Fc ⊆ G , G ′ ⊆ F . Let R
be a left-linear CS over G , E a set of equations over G , and R′ a TRS over G ′. Suppose that
R, G `ind E and there exists an equivalent transformation from R to R′ under E. Then, CR(R)
∧ SC(R, G ) ∧ SC(R′, G ′) imply R 'G∩G ′ R′.

(Proof) Suppose R
∗
⇒
I
RI

∗
⇒
A
RA

∗
⇒
E
R′. We first show some properties of RI . Let R0 = R

and Ri ⇒
I
Ri ∪ {f(x1, . . . , xn) → r} = Ri+1. Then, SC(Ri, Fi) implies SC(Ri+1, Fi ∪ {f})

by the definition of the Introduction rule. Thus, by our assumption SC(R, G ), it easily follows

by induction on the length of R
∗
⇒
I
Ri that SC(Ri, Fi) for all i such that R

∗
⇒
I
Ri. Thus, we

may assume w.l.o.g. SC(RI , F ), because we may ignore any function symbols not appearing
even in RI . It is clear that R ⊆ RI by the definition of the Introduction rule. Also, from
CR(R0) and the fact that each introduced rewrite rule f(x1, . . . , xn)→ r at i + 1 is left-linear
and non-overlapping with left-linear TRS Ri, it follows that CR(RI) using the commutativity
of TRSs. Thus, for RI , we have (1) SC(RI , F ), (2) R ⊆ RI , and (3) CR(RI). We next show

that
∗
↔R =

∗
↔R′ on T(G ∩ G ′).

1.
∗
↔R =

∗
↔RI

on T(G ). (i.e., for any s, t ∈ T(G ), s
∗
↔R t iff s

∗
↔RI

t.)

(⊆) Trivial. (⊇) Suppose that s
∗
↔RI

t where s, t ∈ T(G ). By SC(R, G ), there exist

ground constructor terms s′, t′ ∈ T(Fc) such that s
∗
→R s′ and t

∗
→R t′. From R ⊆ RI ,

we have s
∗
→RI

s′ and t
∗
→RI

t′. Thus, by CR(RI) and T(Fc) ⊆ NF(RI), s′ = t′ holds.

This means s
∗
→R s′ = t′

∗
←R t.

2.
∗
↔RI

=
∗
↔RA

on T(F ). (i.e., for any s, t ∈ T(F ), s
∗
↔RI

t iff s
∗
↔RA

t.)
(⊆) Trivial. (⊇) Suppose that s↔E t where s, t ∈ T(F ). By the definition of ↔E , there
exist a context C[ ], a ground substitution θg, and an equation l ≈ r ∈ E or r ≈ l ∈ E
such that s = C[lθg] and t = C[rθg]. By SC(RI , F ), there exists a ground substitution

θc
g such that θg(x)

∗
→RI

θc
g(x) ∈ T(Fc) for any x ∈ dom(θg). Then, C[lθg]

∗
→RI

C[lθc
g]

and C[rθg ]
∗
→RI

C[rθc
g ] hold. Now, since lθc

g, rθ
c
g ∈ T(G ), we have lθc

g

∗
↔R rθc

g by our

assumption R, G `ind E . Thus, by R ⊆ RI , C[lθc
g]

∗
↔RI

C[rθc
g ] holds. Hence,

∗
↔RI

⊇

↔E on F . It is easy to see by the definition of the Addition rule that
∗
↔RA

=
∗
↔E∪RI

on

T(F , V ). Hence,
∗
↔RA

⊆
∗
↔E∪RI

⊆
∗
↔RI

on T(F ).

3.
∗
↔RI

=
∗
↔R′ on T(G ′) (i.e., for any s, t ∈ T(G ′), s

∗
↔RI

t iff s
∗
↔R′ t.)

(⊇) It easily follows from item 2 and the definition of the Elimination rule. (⊆) Suppose
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that s
∗
↔RI

t where s, t ∈ T(G ′). From SC(R′, G ′), there exist ground constructor terms

s′, t′ ∈ T(Fc) such that s
∗
→R′ s′ and t

∗
→R′ t′. As we have already shown

∗
↔RI

⊇
∗
↔R′

on T(G ′), it follows that s′
∗
↔RI

s
∗
↔RI

t
∗
↔RI

t′. From CR(RI) and T(Fc) ⊆ NF(RI),

s′ = t′ holds. This means s
∗
→R′ s′ = t′

∗
←R′ t.

From 1, 3, and T(G ∩ G ′) ⊆ T(G ), T(F ), T(G ′), it follows that
∗
↔R =

∗
↔R′ on T(G ∩ G ′).

Finally, we show R 'G∩G ′ R′. Suppose s ∈ T(G ∩ G ′), t ∈ T(Fc), and s
∗
→R t. From

SC(R′, G ′), there exists a constructor term t′ ∈ T(Fc) such that s
∗
→R′ t′. By

∗
↔R =

∗
↔R′ on

T(G ∩G ′) and Fc ⊆ G ∩G ′, we have t
∗
↔R t′. Then, by CR(R) and T(Fc) ⊆ NF(R), it follows

t = t′. Hence, s
∗
→R′ t′ = t. Conversely, suppose s ∈ T(G ∩ G ′), t ∈ T(Fc), and s

∗
→R′ t.

From SC(R, G ), there exists a constructor term t′ ∈ T(Fc) such that s
∗
→R t′. By

∗
↔R =

∗
↔R′

on T(G ∩ G ′) and Fc ⊆ G ∩ G ′, we have t
∗
↔R t′. Then, by CR(R) and T(Fc) ⊆ NF(R), it

follows t = t′. Hence, s
∗
→R t′ = t. �

Example 4.3. Let Rsum, R′
sum be the TRSs in Example 3.1. Let E be the following set of

equations.

E

{

+(0, x) ≈ +(x, 0)
+(+(x, y), z) ≈ +(x, +(y, z))

Note that any equation in E is an inductive consequence of Rsum for G = {sum, +, :, [ ], s, 0},
i.e., R, G `ind E .

We now demonstrate an equivalent transformation from Rsum to R′
sum under E . Let R0 =

Rsum.

1. Let R1 = R0 ∪{sum1(x, y)→ +(y, sum(x))}. Clearly, R0 ⇒ R1 by the Introduction rule.

2. Let R2 = R1 ∪ {sum(x)→ sum1(x, 0)}. Here, we have

sum(x) ←R1
+(0, sum(x))

←R1
sum1(x, 0)

Thus, R1 ⇒ R2 by the Addition rule.

3. Let R3 = R2 ∪ {sum1([ ], x)→ x}. Then, we have

sum1([ ], x) →R2
+(x, sum([ ]))

→R2
+(x, 0)

↔E +(0, x)
→R2

x

Thus, R2 ⇒ R3 by the Addition rule.

4. Let R4 = R3 ∪ {sum1(x:y, z)→ sum1(y, +(z, x))}. Then, we have

sum1(x:y, z) →R3
+(z, sum(x:y))

→R3
+(z, +(x, sum(y)))

↔E +(+(z, x), sum(y))
←R3

sum1(y, +(z, x))
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Thus, R3 ⇒ R4 by the Addition rule.

5. Finally, applying the Elimination rule three times to R4, we obtain R′
sum.

Thus, there exists an equivalent transformation from Rsum to R′
sum under E . It is easily

shown that Rsum is confluent and sufficiently complete for G and that R′
sum is sufficiently

complete for G ∪ {sum1}. Therefore, from Theorem 4.2, it follows that Rsum 'G R′
sum.

4.2 Correctness of Templates

For the TRS transformation in Example 3.2, it is easily observed that the correctness of the
transformation can be proved exactly in the same way. Thus, one may naturally expect that
such manual transformations can be conducted at the template level. A naive method of
proving the correctness of a template 〈P ,P ′,H〉 is to find an equivalent transformation from

P to P ′ under H similar to TRSs. This naive method, however, does not work because P
∗
⇒

P ′ under H does not imply ϕ(P)
∗
⇒ ϕ(P ′) under ϕ(H) in general. For example, suppose P

= {p(x) → a(b)} and P ′ = P ∪ {q(x) → b}. Then, P ⇒
I
P ′. However, ϕ(P) 6⇒

I
ϕ(P ′) when

ϕ = {p 7→ f(�1), q 7→ f(�1), a 7→ 0, b 7→ 1}. The key idea in the proof of Theorem 4.2 is the
preservation of the Church-Rosser property under the Introduction rule. In the example above,
ϕ(P ′) does not have the Church-Rosser property even though P ′ does. Thus, in order to preserve
the correctness of each step, in particular the Introduction step in equivalence transformation,
some restrictions on the term homomorphism ϕ are necessary.

Correct templates are constructed by inference rules similar to equivalent transformations.

Definition 4.4. Let P0 be a TRS pattern over a set Σ0 ⊆ F ∪X and H a hypothesis over
Σ0. A correct transformation sequence under H is a sequence P0, . . . ,Pn of TRS patterns (over
Σ0, . . . , Σn, respectively) such that Pk+1 is obtained from Pk by applying one of the following
inference rules:

(I) Introduction
Pk+1 = Pk ∪ {p(x1, . . . , xn)→ r}

provided that p(x1, . . . , xn) → r is a left-linear rewrite rule such that p /∈ Σk and r ∈
T(Σk, V ). We put Σk+1 = Σk ∪ {p}.

(A) Addition
Pk+1 = Pk ∪ {l→ r}

provided l
∗
↔Pk∪H r holds.

(E) Elimination
Pk+1 = Pk \ {l→ r}

When this is the case, we write Pk ⇒ Pk+1. (In the Addition and Elimination rules, Σk+1 can
be any set such that Σk+1 ⊆ Σk provided that Pk+1 is a TRS pattern over Σk+1.) The reflexive

transitive closure of ⇒ is denoted by
∗
⇒. We indicate the rule of ⇒ by ⇒

I
, ⇒

A
, or ⇒

E
. Finally,

we say that 〈P ,P ′,H〉 is a correct template when there exits a correct transformation sequence

P
∗
⇒
I
·

∗
⇒
A
·

∗
⇒
E
P ′ under H.

17



Since, for any term homomorphism ϕ, P ⇒ P ′ does not imply ϕ(P) ⇒ ϕ(P ′), generally,
some restrictions of term homomorphisms are necessary to use for correct transformations. Such
restrictions are needed to guarantee the fact that the Introduction rule preserves the Church-
Rosser property and sufficient completeness. Let P and P ′ be TRS patterns over Σ and Σ′,
respectively and ϕ a term homomorphism. Suppose P ⇒

I
P ∪ {p(x1, . . . , xn)→ r} = P ′ by the

Introduction rule. CR(P) implies CR(P ′) because p does not appear in P . If p /∈ domX (ϕ)
and p does not appear in ϕ(P), then CR(ϕ(P)) implies CR(ϕ(P ′)). Further, SC(P , Σ) implies
SC(P ′, Σ∪{p}) because any ground term pattern which contains p can be reduced to a ground
term pattern which does not contain p. If ϕ(r) ∈ T(G , V ) whenever ϕ(P) is a TRS over
G ⊆ F , then SC(ϕ(P), G ) implies SC(ϕ(P ′), G ∪ {p}). These conditions are summarized by
the following definition.

Definition 4.5. Let Σ and G be sets such that Σ ⊆ F∪X and G ⊆ F . A term homomorphism
ϕ carries Σ to G if

1. domX (ϕ) = Σ \F , and

2. rangeX (ϕ) ⊆ G .

where rangeX (ϕ) =
⋃

p∈domX (ϕ) F (ϕ(p)).

Next lemma can be shown in a straightforward way.

Lemma 4.6. Let P and P ′ be TRS patterns over Σ and Σ′, respectively, and ϕ a term homo-
morphism which carries Σ to G ⊆ F . If ϕ(P) is a TRS over G and P ⇒

I
P ′ by the Introduction

rule, then ϕ(P)⇒
I

ϕ(P ′) by the Introduction rule.

In Lemma 4.6, each pattern variable appearing in ϕ(P ′) is regarded as a fresh function symbol.
This is also applied to the next theorem.

We then obtain the following theorem from Proposition 3.8 and Lemma 4.6.

Theorem 4.7. Let 〈P ,P ′,H〉 be a correct template where P and P ′ are TRS patterns over Σ
and Σ′, respectively, and ϕ a term homomorphism which carries Σ to G . If (Σ′ \ Σ) ∩ G = ∅

and ϕ(P) is a TRS over G , then there exists an equivalent transformation ϕ(P)
∗
⇒ ϕ(P ′) under

ϕ(H).

This theorem leads to the next definition of TRS transformation by correct templates.

Definition 4.8. Let 〈P ,P ′,H〉 be a template where P and P ′ are TRS patterns over Σ and
Σ′, respectively. A TRS R over G is transformed to a TRS R′ over G ′ if there exist a term
homomorphism ϕ and a TRS Rcom over G such that:

1. R = ϕ(P) ∪Rcom,

2. ϕ carries Σ to G ,

3. R′ = ϕout(P ′) ∪Rcom, where
ϕout = ϕ ∪ {p 7→ fp(�1, . . . ,�arity(p)) |

p /∈ domX (ϕ), fp is a fresh function symbol (i.e. fp /∈ G )},

4. (Σ′ \ Σ) ∩ G = ∅, and

5. R, G `ind ϕ(H).
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Next theorem gives sufficient conditions to guarantee the correctness of TRS transformations
by correct templates.

Theorem 4.9. If a left-linear CS R over G is transformed to a TRS R′ over G ′ by a correct
template 〈P ,P ′,H〉, then CR(R) ∧ SC(R, G ) ∧ SC(R′, G ) implies R 'G∩G ′ R′.

In this section, we give correct transformation templates which can be used to apply tupling
transformations.

Let 〈P ,P ′,H〉 be a template where

P























p(a) → c

p(b(a)) → d

p(b(b(x))) → q(p(b(x)), p(x))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

P ′















































p(a) → c

p(b(a)) → d

p(b(b(x))) → π1(r1(r(x)))
r(a) → 〈d, c〉
r(b(x)) → r1(r(x))
r1(x) → 〈q(π1(x), π2(x)), π1(x)〉
π1(〈x, y〉) → x
π2(〈x, y〉) → y

H = ∅.

Here, π1, π2, and 〈·〉 are function symbols. We now show that the template 〈P ,P ′,H〉 is a
correct template.

1. Let P0 = P .

2. Let P1 = P0∪{r(x)→ 〈p(b(x)), p(x)〉}. Here, r is a fresh pattern variable. Thus, P0 ⇒ P1

by the Introduction rule.

3. Let P2 = P1 ∪ {r1(x) → 〈q(π1(x), π2(x)), π1(x)〉}. Here, r1 is a fresh pattern variable.
Thus, P1 ⇒ P2 by the Introduction rule.

4. Let P3 = P2 ∪ {r(a) → 〈d, c〉}. Here, we have r(a) →P2
〈p(b(a)), p(a)〉

∗
→P2

〈d, c〉. Thus,
P2 ⇒ P3 by the Addition rule.

5. Let P4 = P3 ∪ {r(b(x)) → r1(r(x))}. Here, we have r(b(x)) →P3
〈p(b(b(x))), p(b(x))〉

→P3
〈q(p(b(x)), p(x)), p(b(x))〉

∗
←P3

〈q(π1(r(x)), π2(r(x))), π1(r(x))〉 ←P3
r1(r(x)). Thus,

P3 ⇒ P4 by the Addition rule.

6. Let P5 = P4∪{p(b(b(x)))→ π1(r1(r(x)))}. Here, we have p(b(b(x)))←P4
π1(〈p(b(b(x))), p(b(x))〉) ←P4

π1(r(b(x))) →P4
π1(r1(r(x))). Thus, P4 ⇒ P5 by the Addition rule.

7. Finally, applying the Elimination rule twice to P5, we obtain P ′.

Thus, 〈P ,P ′,H〉 is a correct template.

Example 4.10. The following TRS Rfib computes Fibonacci number of input natural numbers.
Rfib is transformed to the TRS R′

fib by the template 〈P ,P ′,H〉.

Rfib















fib(0) → s(0) +(0, x) → x
fib(s(0)) → s(0) +(s(x), y) → s(+(x, y))
fib(s(s(x))) → +(fib(s(x)), fib(x)) π1(〈x, y〉) → x

π2(〈x, y〉) → y
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R′
fib































fib(0) → s(0) +(0, x) → x
fib(s(0)) → s(0) +(s(x), y) → s(+(x, y))
fib(s(s(x))) → π1(fr1(fr(x))) π1(〈x, y〉) → x
fr(0) → 〈s(0), s(0)〉 π2(〈x, y〉) → y
fr(s(x)) → fr1(fr(x))
fr1(x) → 〈+(π1(x), π2(x)), π1(x)〉

Let us consider another template. The following template 〈P̃, P̃ ′, H̃〉 deals with slightly
more complicated tupling transformations.

P̃































p(a) → b

p(c(x, y)) → h(x, y, q(y), p(y))
q(a) → d

q(c(x, y)) → e(x, y, q(y))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

P̃ ′































































p(a) → b

p(c(x, y)) → π1(r1(x, y, r(y)))
r(a) → 〈b, d〉
r(c(x, y)) → r1(x, y, r(y))
r1(x, y, z) →
〈h(x, y, π2(z), π1(z)), e(x, y, π2(z))〉

q(a) → d

q(c(x, y)) → e(x, y, q(y))
π1(〈x, y〉) → x
π2(〈x, y〉) → y

H̃ = ∅

Here, π1, π2, and 〈·〉 are function symbols.
We now show that there exists a correct transformation sequence from P̃ to P̃ ′ under H̃,

i.e. 〈P̃ , P̃ ′, H̃〉 is a correct template.

1. Let P0 = P̃ .

2. Let P1 = P0 ∪ {r(x) → 〈p(x), q(x)〉}. Here, r is a fresh pattern variable. Thus P0 ⇒ P1

by the Introduction rule.

3. Let P2 = P1∪ {r1(x, y, z) → 〈h(x, y, π2(z), π1(z)), e(x, y, π2(z))〉}. Here, r1 is a fresh
pattern variable. Thus P1 ⇒ P2 by the Introduction rule.

4. Let P3 = P2 ∪ {r(a) → 〈b, d〉}. Here, we have r(a) →P2
〈p(a), q(a)〉

∗
→P2

〈b, d〉. Thus,
P2 ⇒ P3 by the Addition rule.

5. Let P4 = P3 ∪{r(c(x, y))→ r1(x, y, r(y))}. We have r(c(x, y)) →P3
〈p(c(x, y)), q(c(x, y))〉

∗
→P3

〈h(x, y, q(y), p(y)), e(x, y, q(y))〉
∗
←P3

〈h(x, y, π2(r(y)), π1(r(y))), e(x, y, π2(r(y)))〉 ←P3

r1(x, y, r(y)). Thus, P3 ⇒ P4 by the Addition rule.

6. Let P5 = P4∪{p(c(x, y))→ π1(r1(x, y, r(y)))}. Here, we have p(c(x, y))←P4
π1(r(c(x, y)))→P4

π1(r1(x, y, r(y))). Thus, P4 ⇒ P5 by the Addition rule.

7. Finally, applying the Elimination rule twice to P5, we obtain P̃ ′.

Thus, 〈P̃ , P̃ ′, H̃〉 is a correct template.

Example 4.11. A list of numbers is said to be steep if each element is greater than the sum
of the elements that follow it [7]. The following TRS Rsteep specifies a program which checks
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whether input lists are steep. Rsteep is transformed to TRS R′
steep by the template 〈P̃ , P̃ ′, H̃〉.

Rsteep























































steep(nil) → true and(true, true) → true

steep(x:xs) → and(true, false) → false

and(gt(x, sum(xs)), steep(xs)) and(false, true) → false

sum(nil) → 0 and(false, false) → false

sum(x:ys) → +(x, sum(ys)) +(0, x) → x
gt(0, 0) → false +(s(x), y) → s(+(x, y))
gt(0, s(y)) → false π1(〈x, y〉) → x
gt(s(x), 0) → true π2(〈x, y〉) → y
gt(s(x), s(y)) → gt(x, y)

R′
steep































































steep([ ]) → true gt(s(x), 0) → true

steep(x:y) → π1(fr1(x, y, fr(y))) gt(s(x), s(y)) → gt(x, y)
fr([ ]) → 〈true, 0〉 and(false, false) → false

fr(x:y) → fr1(x, y, fr(y)) and(false, true) → false

fr1(x, y, z) → and(true, false) → false

〈and(gt(x, π2(z)), π1(z)), +(x, π2(z))〉 and(true, true) → true

sum([ ]) → 0 +(0, x) → x
sum(x:y) → +(x, sum(y)) +(s(x), y) → s(+(x, y))
gt(0, 0) → false π1(〈x, y〉) → x
gt(0, s(y)) → false π2(〈x, y〉) → y

Example 4.12. The following TRS Rfactlist computes lists whose elements are factorial num-
bers.

Rfactlist































factlist(0) → [ ] ×(0, y) → 0

factlist(s(x)) → ×(s(x), y) → +(y,×(x, y))
×(s(x), fact(x)):factlist(x) +(0, x) → x

fact(0) → s(0) +(s(x), y) → s(+(x, y))
fact(s(x)) → ×(s(x), fact(x)) π1(〈x, y〉) → x

π2(〈x, y〉) → y

Since P̃ can match to Rfactlist, one might expect that Rfactlist is transformed by the template
〈P̃ , P̃ ′, H̃〉. But this transformation fails. For, factlist(s(y)) → π1(fr1(x, y, fr(y))) appears in
ϕout (P̃ ′), but this rule is not a rewrite rule (x appears in the rhs but the lhs). Indeed, ϕ cannot
instantiate r1 because ϕ has to carry the signature of P̃ to Rfactlist, that is, r1 /∈ domX (ϕ) must
hold.

4.3 Summary

In this chapter, we gave a notion of equivalent transformation of TRSs which improved and
simplified the technique proposed by Toyama[25]. We then proved that the equality of re-
stricted TRSs is guaranteed by the equivalent transformation of TRSs (Theorem 4.2). The
method to construct correct templates is given by lifting up the technique of equivalent trans-
formation of TRSs to template level. We also introduced the notion of carrying signatures
for term homomorphisms which preserve inferences of equivalent transformations. The def-
inition of transformations by templates (Definition 4.5) takes account of carrying signatures
for term homomorphisms. Theorem 4.9 showed that correct templates guarantee the correct-
ness of transformations for restricted TRSs. We gave examples of correct templates and TRS
transformations by them.
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Chapter 5

Matching Algorithm

In this chapter, we mainly focus on the TRS pattern matching problem, which is a key part of our
procedure of TRS transformation by templates. We introduce a term pattern matching problem
and present a sound and complete algorithm that solves this problem. Then the algorithm that
solves TRS pattern matching problem is obtained using the term pattern matching algorithm.

5.1 Term Pattern Matching

Definition 5.1. (1) A pair 〈s, t〉 of a pattern s and a term t is called a (term pattern) matching
pair. A matching pair 〈s, t〉 is written as s E t. A (term pattern) matching problem is a finite
set of matching pairs. (2) For a matching pair s E t, we say s matches t when there exists a
term homomorphism ϕ such that ϕ(s) = t; the term homomorphism ϕ is called a matcher (or
solution) of s E t. (3) A matching problem S is trivial when s = t for all s E t ∈ S. For a
term homomorphism ϕ and a matching problem S, let ϕ(S) = {ϕ(s) E t | s E t ∈ S}. When
ϕ(S) is trivial, ϕ is said to be a matcher (or solution) of the matching problem S.

Example 5.2. Suppose f, c ∈ X and sum, : ∈ F . Then f(c(u, v)) E sum(x:y) is a matching
pair. Let S = { f(c(u, v)) E sum(x:y) } be a matching problem and ϕ = { f 7→ sum(�1),
c 7→ �1:�2, u 7→ x, v 7→ y } a term homomorphism. Then ϕ(S) = {sum(x:y) E sum(x:y)}
is a trivial matching problem and thus ϕ is a matcher of S. We also write ϕ(S) as {f 7→
sum(�1), c 7→ �1:�2, u 7→ x, v 7→ y}S.

We next give a procedure Match that computes a matcher of S non-deterministically for a
given matching problem S when it succeeds.

Definition 5.3. (1) Let =⇒ be a relation between pairs of a matching problem and a term
homomorphism defined by: 〈S, ϕ〉 =⇒ 〈S′, ϕ′〉 when 〈S, ϕ〉 is rewritten to 〈S′, ϕ′〉 by an appli-

cation of the rules Bound, Split or Extract in Table 5.1. Let
∗

=⇒ be the reflexive transitive
closure of =⇒. (2) The procedure Match is given as follows:

Match

Input: a matching problem S
Output: a term homomorphism ϕ

1. Repeatedly apply inference rules Bound, Split or Extract starting from 〈S, ∅〉.

2. Output ϕ if 〈S, ∅〉
∗

=⇒ 〈∅, ϕ〉.
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Table 5.1: Inference rules of Match

1. Bound

〈S ∪ {x E y}, ϕ〉

〈S, ϕ ∪ {x 7→ y}〉
x, y ∈ V , ϕ(x) = y ∨ (x 6∈ domV (ϕ) ∧ y 6∈ range(ϕ))

2. Split
〈S ∪ {f(s1, . . . , sn) E f(t1, . . . , tn)}, ϕ〉

〈S ∪ {s1 E t1, . . . , snE, tn}, ϕ〉
f ∈ F

3. Extract

〈S ∪ {p(s1, . . . , sn) E C〈t1, . . . , tn〉}, ϕ〉

〈{p 7→ C}(S ∪ {si E ti | �i ∈ C}), ϕ ∪ {p 7→ C}〉

p ∈ X , C ∈ Cn(F ),
∀i ≤ n. ∀x 7→ y ∈ ϕ.

(�i ∈ C ∧ y ∈ V (ti)⇒ x ∈ V (si))

Example 5.4. We demonstrate a sequence 〈S, ∅〉
∗

=⇒ 〈∅, ϕ〉 in the procedure Match for an
input S = { f(c(u, v)) E sum(x:y), g(u, f(v)) E +(x, sum(y)) } in Figure 5.1.

〈{f(c(u, v)) E sum(x:y), g(u, f(v)) E +(x, sum(y))}, ∅〉 = 〈S0, ϕ0〉

=⇒
Extract

〈{c(u, v) E x:y, g(u, sum(v)) E +(x, sum(y))}, ϕ0 ∪ {f 7→ sum(�1)}〉 = 〈S1, ϕ1〉

=⇒
Extract

〈{u E x, v E y, g(u, sum(v)) E +(x, sum(y))}, ϕ1 ∪ {c 7→ �1:�2}〉 = 〈S2, ϕ2〉

=⇒
Bound

〈{v E y, g(u, sum(v)) E +(x, sum(y))}, ϕ2 ∪ {u 7→ x}〉 = 〈S3, ϕ3〉

=⇒
Bound

〈{g(u, sum(v)) E +(x, sum(y))}, ϕ3 ∪ {v 7→ y}〉 = 〈S4, ϕ4〉

=⇒
Extract

〈{u E x, sum(v) E sum(y)}, ϕ4 ∪ {g 7→ +(�1,�2)}〉 = 〈S5, ϕ5〉

=⇒
Bound

〈{sum(v) E sum(y)}, ϕ5 ∪ {u 7→ x}〉 = 〈S6, ϕ6〉

=⇒
Split

〈{v E y}, ϕ6〉 = 〈S7, ϕ7〉

=⇒
Bound

〈∅, ϕ7 ∪ {v 7→ y}〉 = 〈S8, ϕ8〉

Figure 5.1: A sequence 〈S, ∅〉
∗

=⇒ 〈∅, ϕ〉 in the procedure Match

The next lemma is readily checked.

Lemma 5.5 (Match is well-defined). By applying inference rules Bound, Split or Extract

any pair of a matching problem and a term homomorphism is rewritten to a pair of a matching
problem and a term homomorphism, that is, the procedure Match is well-defined.

Our next aim in this section is to prove the correctness of the procedure Match. First,
we show that for a given input the procedure Match terminates and that the set of all pos-
sible outputs of the algorithm is finite. These facts are necessary to show the soundness and
completeness of the procedure Match.
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Theorem 5.6 (termination of Match). The procedure Match terminates for any input.

Proof. Clearly, it suffices to show that =⇒ is noetherian. Let > be the usual order on the set of
positive natural numbers, >×> the lexicographic extension of > from left to right, and >m the
multiset extension of >×>. Moreover, let� be a partial order on the set of pairs of a matching
problem and a term homomorphism given by: 〈S, ϕ〉 � 〈S′, ϕ′〉 iff [〈|X (s)|, |s|〉 | s E t ∈ S] >m

[〈|X (s)|, |s|〉 | s E t ∈ S′] where |X (s)| denotes the cardinality of the set of pattern variables
appear in s and |s| denotes the term size of s. Since the order >m is well-founded, so is the
order �. Then for each of the inference rules, it is easy to show 〈S, ϕ〉 =⇒ 〈S′, ϕ′〉 implies
〈S, ϕ〉 � 〈S′, ϕ′〉. Hence =⇒ is noetherian.

We now know the procedure Match terminates and therefore use the term algorithm instead
of the procedure.

Theorem 5.7 (number of outputs). For any given input, the number of outputs of the
algorithm Match is finite.

Proof. Clearly, the number of non-deterministic choices of the procedure Match is finite. Thus,
because the procedure Match is terminating, the number of possible outputs of the algorithm
Match is finite.

We next give proofs of the soundness and the completeness of the algorithm Match. These
are proved by induction on the length of the sequence 〈S, ∅〉

∗
=⇒ 〈∅, ϕ〉. For this, it is con-

venient to have a notion of a solution for a pair 〈S, ϕ〉 of a matching problem S and a term
homomorphism ϕ.

Definition 5.8. Let S be a matching problem and ϕ a term homomorphism. A term homo-
morphism ϕ̃ is said to be a solution of the pair 〈S, ϕ〉 if (1) ϕ̃(S) is trivial and (2) ϕ ⊆ ϕ̃.

Lemma 5.9. Let S, S′ be matching problems and ϕ, ϕ′, ϕ̃ term homomorphisms. Suppose
〈S, ϕ〉 =⇒ 〈S′, ϕ′〉 and ϕ̃ is a solution of 〈S′, ϕ′〉. Then ϕ̃ is a solution of 〈S, ϕ〉.

Proof. Distinguish cases by the inference rule applied in the step 〈S, ϕ〉 =⇒ 〈S′, ϕ′〉.

Theorem 5.10 (soundness of Match). Let S be a matching problem and ϕ an output of the
algorithm Match for the input S. Then ϕ is a matcher of S.

Proof. Using Lemma 5.9, it is easy to show by induction on the length of 〈S′, ϕ′〉
∗

=⇒ 〈S′′, ϕ′′〉
that if ϕ̃ is a solution of 〈S′′, ϕ′′〉 then it is also a solution of 〈S′, ϕ′〉. The claim follows
immediately from this.

We next show the completeness of the algorithm Match. To state the completeness in a
precise way, we introduce the notion of a complete set of matchers.

Definition 5.11. Let S be a matching problem and Φ a set of term homomorphisms. The
set Φ is said to be a complete set of matchers of S when the following conditions are satisfied:
(1) any term homomorphism ϕ ∈ Φ is a matcher of S; (2) for any matcher ϕ′ of S, there exists
ϕ ∈ Φ such that ϕ ⊆ ϕ′.

Lemma 5.12. Let 〈S, ϕ〉 be a pair of a non-empty matching problem S and a term homomor-
phism ϕ, and ϕ̃ its solution. Then there exists a pair 〈S′, ϕ′〉 of a matching problem S′ and a
term homomorphism ϕ′ such that ϕ̃ is a solution of 〈S′, ϕ′〉 and 〈S, ϕ〉 =⇒ 〈S′, ϕ′〉.

Proof. Let S = S′′ ∪ {s E t}. By our assumption that ϕ̃ is a solution of 〈S, ϕ〉, it follows that
(1) ϕ̃(S′′) is trivial, and (2) ϕ ⊆ ϕ̃. The proof proceeds by induction on the structure of s.
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1. s = x ∈ V .

Then t = ϕ̃(x), so let y = ϕ̃(x). Then by ϕ ⊆ ϕ̃ and ϕ̃(x) = y, we have either ϕ(x) = y
or x /∈ domV (ϕ) and y 6∈ range(ϕ) as ϕ̃ is injective on domV (ϕ̃). Thus, one can apply
inference rule Bound, and we have 〈S, ϕ〉 =⇒ 〈S′′, ϕ ∪ {x 7→ y}〉. Then, clearly, we have
ϕ′ = ϕ ∪ {x 7→ y} ⊆ ϕ̃. Together with S′′ ⊆ S, we know ϕ̃ is a solution of 〈S′′, ϕ′〉.

2. s = f(s1, . . . , sn) with f ∈ F .

Then t = ϕ̃(f(s1, . . . , sn)) = f(ϕ̃(s1), . . . , ϕ̃(sn)), so let t = f(t1, . . . , tn) where ti = ϕ̃(si)
for i = 1, . . . , n. Then, one can apply the inference rule Split, and we have 〈S, ϕ〉 =⇒
〈S′′∪{s1 E t1, . . . , sn E tn}, ϕ〉. It is easy to check ϕ̃ is a solution of 〈S′′∪{s1 E t1, . . . , sn E

tn}, ϕ〉.

3. s = p(s1, . . . , sn) with p ∈ X .

Since ϕ̃(p(s1, . . . , sn)) = t and t ∈ T(F , V ), p ∈ domX (ϕ̃). By the definition of term ho-
momorphism, we have ϕ̃(p) ∈ Cn(F ). Then t = ϕ̃(p(s1, . . . , sn)) = ϕ̃(p)〈ϕ̃(s1), . . . , ϕ̃(sn)〉.
Let C = ϕ̃(p) and ti = ϕ̃(si) (for i = 1, . . . , n). Then C ∈ Cn(F ). Suppose x 7→ y ∈ ϕ,
�i ∈ C, and y ∈ V (ti). Then x 7→ y ∈ ϕ̃ and y ∈ V (ϕ̃(si)). Thus, since ϕ̃ is injective
on domV (ϕ̃), it follows x ∈ V (si). Thus, one can apply inference rule Extract, and we
have 〈S, ϕ〉 =⇒ 〈{p 7→ C}(S′′ ∪ {si E ti | �i ∈ C}), ϕ ∪ {p 7→ C}〉. Since {p 7→ C} ∈ ϕ̃,
we have ϕ̃({p 7→ C}(S′′ ∪ {si E ti | �i ∈ C})) = ϕ̃(S′′ ∪ {si E ti | �i ∈ C}). Thus, it is
easy to check ϕ̃ is a solution of 〈{p 7→ C}(S′′ ∪ {si E ti | �i ∈ C}), ϕ ∪ {p 7→ C}〉.

Theorem 5.13 (completeness of Match). Let Φ be the collection of all outputs of the
algorithm Match for the input S. Then Φ is a complete set of matchers of S.

Proof. By Theorem 5.10, any ϕ ∈ Φ is a matcher of S. Let ϕ̃ be a matcher of S. From Lemma
5.12, there exists a sequence 〈S, ∅〉 = 〈S0, ϕ0〉 =⇒ 〈S1, ϕ1〉 =⇒ · · · of pairs of a matching
problem and a term homomorphism such that ϕ̃ is a solution of 〈Si, ϕi〉 (for i ≥ 0). By

Theorem 5.6, this sequence is finite. So there exists ϕ′ such that 〈S, ∅〉
∗

=⇒ 〈∅, ϕ′〉 and ϕ′ ⊆ ϕ̃.

Since 〈S, ∅〉
∗

=⇒ 〈∅, ϕ′〉 means ϕ′ ∈ Φ, the claim follows.

5.2 TRS Pattern matching

We now introduce the TRS pattern matching problem in a way similar to the term matching
problem. From here on, we assume that for any TRS R and any defined symbol f ∈ Fd, there
exists a rewrite rule l→ r ∈ R such that root(l) = f .

Definition 5.14. A pair 〈P ,R〉 of a TRS pattern P and TRS R is called a TRS pattern
matching problem. A TRS pattern matching problem 〈P ,R〉 is written as P ER. (2) For a TRS
pattern matching problem P E R we say P matches R when there exists a CS homomorphism
ϕ such that ϕ(P) = R; the CS homomorphism ϕ is called a matcher (or solution) of P E R.

By encoding P andR by sequences of patterns and terms and then running the term pattern
matching algorithm, one can find a solution of the TRS pattern matching problem. Let us first
demonstrate this by an example.

Example 5.15. Let P E R be a TRS pattern matching problem where

P

{

f(a) → b

f(c(u1, v1)) → g(u1, f(v1))
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R

{

sum([ ]) → 0

sum(x1:y1) → +(x1, sum(y1))

This TRS pattern matching problem is encoded as a term pattern matching problem

S = { f(a) E sum([ ]), b E 0, f(c(u1, v1)) E sum(x1:y1),
g(u1, f(v1)) E +(x1, sum(y1)) }.

(There are choices on which correspondence of the rules in P and R is to be chosen, but we
assume that suitable such a choice has been selected in an adequate way.)

By applying the algorithm Match to the term pattern matching problem S, we obtain the
following three solutions:







f 7→ sum(�1), g 7→ +(�1,�2),
a 7→ [ ], b 7→ 0, c 7→ �1:�2,
u1 7→x1, v1 7→ y1







,







f 7→�1, g 7→ +(�2, sum(�1)),
a 7→ sum([ ]), b 7→ 0, c 7→ sum(�2:�1),
u1 7→ y1, v1 7→x1







,







f 7→�1, g 7→ +(�1, sum(�2)),
a 7→ sum([ ]), b 7→ 0, c 7→ sum(�1:�2),
u1 7→x1, v1 7→ y1







.

Among these solutions, one can select a CS homomorphism ϕ, for which ϕ(P) = R holds.
Indeed, the first term homomorphism is a CS homomorphisms.

More formally, the TRS pattern matching procedure is introduced as follows.

Definition 5.16. (1) Let P be a TRS pattern and R a TRS. A sequentialization of a TRS
pattern matching problem P E R is a term pattern matching problem

⋃

s → t ∈ P

σ(s → t) = l → r ∈ R

{s E l, t E r},

where σ maps each s → t ∈ P to some l → r ∈ R. Note that variables of each rewriting rule
are w.l.o.g. assumed to be disjoint. (2) The procedure TRSMatch is given like this:

TRSMatch

Input: a TRS pattern matching problem P E R
Output: a CS homomorphism ϕ

1. Take any sequentialization of P E R, and computes term homomorphism ϕ using Match.

2. output ϕ if ϕ is a CS homomorphism.

The following results follow immediately from those for the Match.

Theorem 5.17 (properties of TRSMatch). For any input, the procedure TRSMatch ter-
minates and the number of outputs of the algorithm TRSMatch is finite.

The following theorem guarantees that any TRS pattern matching problem is solved by our
TRS pattern matching algorithm.
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Theorem 5.18 (solution of TRS pattern matching). Let Φ be the collection of all outputs
of the algorithm TRSMatch for the input P E R. Then (1) any ϕ ∈ Φ is a CS homomorphism
such that ϕ(P) = R; (2) if a CS homomorphism ϕ is a solution of the TRS pattern matching
problem P E R, then there exists ϕ̃ ∈ Φ such that ϕ̃ ⊆ ϕ.

Proof. (1) It follows easily from the definition of TRSMatch and Theorem 5.10. (2) Suppose
that a CS homomorphism ϕ is a solution of the TRS pattern matching problem P E R. Then
clearly ϕ is a solution of some sequentialization S of P E R. Let Φ′ be the set of solutions of the
term pattern matching problem S. Then by Theorem 5.13, there exists a term homomorphism
ϕ̃ ∈ Φ′ such that ϕ̃ ⊆ ϕ and ϕ̃(S) is trivial. Thus for any p, q ∈ Xd, root(ϕ̃(p)) = root(ϕ̃(q))
implies p = q; for otherwise, ϕ is not a CS homomorphism by ϕ̃ ⊆ ϕ. Since any defined
pattern variable p ∈ Xd appears at the root of some rewrite rule in P , p ∈ domX (ϕ̃) holds.
Thus for any p ∈ Xd, ϕ̃(p) = ϕ(p) = f(�i1 , . . . ,�in

) for some f ∈ Fd. Therefore ϕ̃ is a CS
homomorphism and hence ϕ̃ ∈ Φ.

Finally, the procedure for TRS transformation by templates is completed like this:
TRS transformation procedure

Input: TRS R, transformation template 〈P ,P ′,H〉
Output: TRS R′

1. Using TRSMatch, find a CS homomorphism ϕ such that ϕ(P) = R.

2. If p ∈X \domX (ϕ) appears in P ′, then set ϕ(p) = f(�1, . . . ,�arity(p)) for a fresh function
symbol f .

3. Let R′ = ϕ(P ′).

Example 5.19. Let R be a TRS in Example 3.1 and 〈P ,P ′,H〉 be a template in Example 3.3.
Below we demonstrate our TRS transformation procedure for the inputs R and 〈P ,P ′,H〉.

1. First, running the TRSMatch for inputs P E R, the following CS homomorphism ϕ is
found.

ϕ =































f 7→ sum(�1), u1 7→x1,
g 7→+(�1,�2), v1 7→ y1,
a 7→ [ ], u2 7→x2,
b 7→ 0, v3 7→x3,
c 7→�1:�2, w3 7→ y3,
d 7→ s(�2)































2. Since a pattern variable f1 appearing in P ′ does not appear in dom(ϕ), we set ϕ(f1) =
sum1(�1,�2). where sum1 is a fresh function symbol.

3. Apply ϕ to P ′ and obtain

R′























sum(u4) → sum1(u4, 0)
sum1([ ], u5) → u5

sum1(u6:v6, w6) → sum1(v6, +(w6, u6))
+(0, u7) → u7

+(s(u8), v8) → s(+(u8, v8))

Thus, the output TRS is R′.
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Our TRS matching algorithm, in particular, term pattern matching algorithm and the
second-order matching algorithm in lambda calculus by Huet and Lang [6, 11, 12] seem to have
an obvious resemblance although they are incomparable. In the rest of this section, we explain
this briefly.

In the framework based on the lambda calculus, each program is given by a recursive program
schema [23] like this:

{

rev(x) → if(null(x), [ ],
app(rev(cdr(x)), car(x):[ ])).

Such a recursive program schema is represented by a lambda term using a fixpoint operator Y:

Y(λrev .λx.if(null(x), [ ], app(rev(cdr(x)), car(x):[ ]))),

or more precisely,

Y(λrev .λx.if (nullx) [ ] ((app (rev (cdr x))) (: (car x) [ ]))).

Note that the function symbol rev in the recursive program schema is changed into a (bound)
variable rev in the corresponding lambda term.

On the other hand, programs represented by TRSs are not necessarily recursive program
schemas. For example the similar reverse program is represented by the following TRS.

{

rev([ ]) → [ ]
rev(x:y) → app(rev(y), x:[ ]).

Like this, TRS may not be a recursive program schema in general. Because of this, the second-
order matching algorithms in lambda calculus can not be directly applied to the TRS pattern
matching problem.

5.3 Summary

In this chapter, we gave a term pattern matching algorithm Match and show its soundness and
completeness (Theorem 5.10 and 5.13). We then proposed a TRS pattern matching algorithm
TRSMatch by extending Match. We also compared the framework of program transformation
by templates based on term rewriting and lambda calculus in the view of pattern matching.
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Chapter 6

Program Transformation System

RAPT

RAPT (Rewriting-based Automated Program Transformation system) is an implementation of
our framework. This chapter describes about RAPT and reports experiments of transformations
brought by RAPT. RAPT transforms input many-sorted TRSs according to specified correct
templates and verifies its correctness automatically.

6.1 Implementation

A key property of our framework is sufficient completeness, which has to be satisfied by input
and output TRSs. Sufficient completeness is checked in RAPT by the decidable necessary
and sufficient condition for terminating TRSs [13, 17], and thus currently the target of program
transformation by RAPT is limited to terminating TRSs. A simple procedure to check confluence
is also available for terminating TRSs [1].

RAPT uses rewriting induction [21], in which termination plays an essential role, to ver-
ify that the instantiated hypotheses of transformation template are inductive consequences of
the input TRS. Since RAPT handles only terminating TRSs, rewriting induction is integrated
keeping the whole system simple. Other inductive proving methods [2, 4] also can be possibly
incorporated.

For the termination checking, RAPT detects a possible compatible precedence for the lexico-
graphic path ordering (LPO) [1]. The obtained reduction ordering is used as a basis of rewriting
induction. Other methods to verify termination of TRSs [1] may well be incorporated.

6.1.1 Specification of input TRS and transformation template

Inputs of RAPT are a many-sorted TRS and a transformation template. The input TRS is
specified by the following sections.

1. FUNCTIONS: function symbols with sort declaration.

2. RULES: rewrite rules over many-sorted terms.

The transformation template 〈P ,P ′,H〉 is specified by the following sections.

1. INPUT: rewrite rules of P over patterns,
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FUNCTIONS

sum: List -> Nat;

cons: Nat * List -> List;

nil: List;

+: Nat * Nat -> Nat;

s: Nat -> Nat;

0: Nat

RULES

sum(nil()) -> 0();

sum(cons(x,ys)) -> +(x,sum(ys));

+(0(), x) -> x;

+(s(x),y) -> s(+(x,y))

INPUT

?f(?a()) -> ?b();

?f(?c(u,v)) -> ?g(?e(u),?f(v));

?g(?b(),u) -> u;

?g(?d(u,v),w) -> ?d(u,?g(v,w))

OUTPUT

?f(u) -> ?f1(u,?b());

?f1(?a(),u) -> u;

?f1(?c(u,v),w) -> ?f1(v,?g(w,?e(u)));

?g(?b(),u) -> u;

?g(?d(u,v),w) -> ?d(u,?g(v,w))

HYPOTHESIS

?g(?b(),u) = ?g(u,?b());

?g(?g(u,v),w) = ?g(u,?g(v,w))

Figure 6.1: Specification of input TRS and transformation template

2. OUTPUT: rewrite rules of P ′ over patterns,

3. HYPOTHESIS: equations of H over patterns.

Figure 6.1 shows the many-sorted TRS Rsum and the template 〈P , P ′, H〉 which appear in
Section 2 prepared as an input to RAPT: rules, equations and sort declarations are separated
by ”;”; pattern variables are preceded by ”?”; and to distinguish variables from constants, the
latter are followed by ”()” .

6.1.2 Implementation details

RAPT is implemented using SML/NJ. The source code of RAPT consists of about 5,000 lines.
The TRS transformation and the verification of its correctness are conducted in RAPT in

6 phases. In Figure 6.2, we describe these phases and dependencies among each phase. Solid
arrows represent data flow and dotted arrows explain how information obtained in each phase
is used.

If these 6 phases are successfully passed then RAPT produces output TRSs. The correctness
of the transformation is guaranteed, provided the transformation template is developed. RAPT

can also report summaries of program transformation in a readable format (Figure 6.3).
We now explain operations of each phases briefly.

1. Validation of input TRS In this phase, RAPT checks whether the input TRS is left-
linear and well-typed, and from rewrite rules divides function symbols into defined function
symbols and constructor symbols and checks whether the input TRS is a constructor system.
The information of function symbols will be used in Phases 3 and 4.

2. Precedence detection In this phase, RAPT checks the input TRS is terminating by LPO
and (if it is the case) detects a precedence. The suitable precedence (if there exists one) for
LPO is computed based on the LPO constraint solving algorithm described in [10].
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R

P ′P

Validation of
Input TRS

Precedence
Detection

TRS Pattern
Matching Instantiation

R′

Proving Confluence and
Sufficient Completeness 5

Verification of HypothesisH 5

Validation of Output TRSSort

Output
Figure 6.2: Overview of RAPT

3. Proving confluence and sufficient completeness In this phase, RAPT proves whether
the input TRS is confluent and sufficiently complete. This makes use of the information of
constructor symbols detected at Phase 1 and the fact that the input TRS is left-linear and
terminating verified at Phases 1 and 2, respectively. For confluence, it is checked whether all
critical pairs are joinable. For sufficient completeness, quasi-reducibility of the TRS is checked;
this part is based on the (many-sorted extension of) complement algorithm introduced in [15]
that computes the complement of a substitution.
4. TRS pattern matching In this phase, RAPT finds a combination of rewrite rules to
apply the transformation and the term homomorphism which instantiates the input pattern
TRS to these rewrite rules; the matching algorithm TRSMatch is used in this part. Using
information of function symbols detected in Phase 1, it is also checked whether this term
homomorphism is a CS-homomorphism. Pattern matching of rewrite rules are carried out in
order, and use the information of matching solutions to limit next rewrite rules to perform the
pattern match. Since solving the patten matching of main function usually gives information
which subfunctions are used in sequel, this heuristics performs the TRS matching relatively
well. Visually, consider the case when P = {pi(x) → pi−1(x) | 1 ≤ i ≤ 9} ∪ {p0(x) → a} and
R = {fi(x)→ fi−1(x) | 1 ≤ i ≤ 9}∪ {f0(x)→ 0} where the number of all possible combinations
of rewrite rules becomes 10! = 3, 628, 800 while the number of matching performed becomes
∑10

i=0 i = 55.

5. Verification of hypothesis In this phase, RAPT checks whether the input TRS satisfies
the hypothesis part of the template. This is done by (1) instantiating the hypotheses through
the term homomorphism found at Phase 4 and (2) proving they are inductive consequences of
the input TRS, using rewriting induction. The latter uses LPO with the precedence detected
at Phase 2.

6. Validation of output TRS In this phase, RAPT checks whether the output TRS is (1)
terminating, (2) left-linear, (3) type consistent, and (4) sufficiently complete. In (3), because
the pattern TRS P ′ for the output may contain a pattern variable not occurring in the pattern
TRS P for the input, types may be unknown for some of function symbols in R′. Therefore,
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Summary of Program Transformation
reported by RAPT

February 21, 2006

Transformation Template:

P



f(a) → b

f(c(u, v)) → g(e(u, v), f(v))

P
′

8

<

:

f(u) → f1(u, b)
f1(a, u) → u

f1(c(u, v), w) → f1(v, g(w, e(u, v)))

H

8

<

:

g(b, u) ≈ u

g(u, b) ≈ u

g(g(u, v), w) ≈ g(u, g(v, w))

Input TRS:

R

8

>

>

<

>

>

:

rev(nil) → nil

rev(cons(x, ys)) → app(rev(ys), cons(x, nil))
app(nil, x) → x

app(cons(x, y), z) → cons(x, app(y, z))

Termination of R is checked by LPO with the precedence {rev > app, rev > nil, rev >
cons, app > cons}. The set of critical pairs of R is {}.

A solution of matching (CS-homomorphisms):

ϕ =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b 7→ nil

a 7→ nil

e 7→ cons(�1, nil)
g 7→ app(�2,�1)
c 7→ cons(�1,�2)
f 7→ rev(�1)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

The instantiation of hypothesis:

ϕ(H)

8

<

:

app(u, nil) ≈ u

app(nil, u) ≈ u

app(w, app(v, u)) ≈ app(app(w, v), u)

Output TRS:

R
′

8

>

>

>

>

<

>

>

>

>

:

rev(u) → f1(u, nil)
f1(nil, u) → u

f1(cons(u, v), w) → f1(v, cons(u, w))
app(nil, x) → x

app(cons(x, y), z) → cons(x, app(y, z))

Figure 6.3: Example of a program transformation report

32



Figure 6.4: Snapshot of TRS pattern matching

we need to infer the type information together with the type consistency check. (4) is proved
based on the fact the output TRS is terminating which is verified at (1) using LPO.

6.2 Experiments

We have checked operations of RAPT using several templates. Table 6.1 describes some of
transformation templates and numbers of TRSs succeeded in transformation by each template.
Template I is the one which appears in Section 2. This template represents a well-known
transformation from recursive programs to iterative programs. A same kind of transformation
is also described by Template II. The main difference between Template I and II is the right-
hand side of second rule of input parts. In our experiments, there exist TRSs which cannot
be transformed by one of these templates but can be done by the other. Template III is the
one which overcomes this difference; unchanged rewrite rules of input and output TRS patterns
are removed and rewrite rules which are necessary to develop the template are pushed into the
hypothesis. Template IV represents another transformation known as fusion or deforestation
[26].

RAPT performs transformations of these examples in less than 100 msec.
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Table 6.1: Experimental result

Template I TRSs Template II TRSs
{

f(a) → b

f(c(u, v)) → g(e(u), f(v))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

}

,











f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(w, e(u)))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))











,

{

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

}

3

{

f(a) → b

f(c(u, v)) → g(f(v), e(u))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))

}

,











f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(e(u), w))
g(b, u) → u
g(d(u, v), w) → d(u, g(v, w))











,

{

g(b, u) ≈ g(u, b)
g(g(u, v), w) ≈ g(u, g(v, w))

}

3

Template III TRSs Template IV TRSs

{

f(a) → b
f(c(u, v)) → g(e(u, v), f(v))

}

,

{

f(u) → f1(u, b)
f1(a, u) → u
f1(c(u, v), w) → f1(v, g(w, e(u, v)))

}

,

{

g(b, u) ≈ u
g(u, b) ≈ u
g(g(u, v), w) ≈ g(u, g(v, w))

}

11











f(x, y, z) → g(h(x, y), z)
g(a, y) → b(u)
g(c(x, y), z) → e(x, g(y, z))
h(a, y) → r(y)
h(c(x, y), z) → c(d(x), h(y, z))











,















f(a, y, z) → g(r(y), z)
f(c(x, y), z, w) → e(d(x), f(y, z, w))
g(a, y) → b(u)
g(c(x, y), z) → e(x, g(y, z))
h(a, y) → r(y)
h(c(x, y), z) → c(d(x), h(y, z))















,

{}

8
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Chapter 7

Constructing Templates

To apply the technique of program transformation by template, appropriate transformation
patterns have to be constructed beforehand. Thus, it is important to introduce new trans-
formation patterns in order to enhance the variety of program transformation. Up to our
knowledge, however, few works discuss about the construction of transformation templates.

Our idea is to construct transformation patterns by considering the opposite of problems of
program transformation, that is, we try to construct transformation patterns by generalizing
similar TRS transformations. For example, from TRS transformations Rsum ⇒ R′

sum and
Rcat ⇒ R′

cat, we try to construct the transformation pattern P ⇒ P ′. We expect that our
method will help to extract new transformation patterns from existing program transformations.

R1

R′
1

R2

R′
2

TRS transformations

Generalize

Generalize

P ′

P

template

Figure 7.1: Overview of the construction of a template

We first propose a generalization procedure of two terms, and extend it for two TRSs. We
then propose the construction of transformation patterns using the generalization procedure
of TRSs. The input part of the transformation pattern is constructed by generalizing inputs
of program transformations. Then the output part is constructed by generalizing outputs of
program transformations using the information of generalization of input part. (Fig. 7.1).
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Our method is inspired by Plotkin’s work[20] for the first-order generalization of terms. The
key technique of our method is the 2nd-order generalization of terms; contrast to the first-order
generalization, a function part of a term can be instantiated in the 2nd-order generalization.
For example, a first-order generalization of +(s(x1), y1) and +(x2, s(y2)) is +(x3, y3). On the
other hand, a 2nd-order generalization of +(s(x1), y1) and ×(s(x2), y2) is p(s(x3), y3) where p

is a pattern variable that is instantiated by + or ×.
An important problem in program transformation is to guarantee its correctness. We say

that a program transformation is correct when the input and output program perform the same
computation. In fact, incorrect transformations may be also obtained by the transformation
pattern P ⇒ P ′ above. We have defined a transformation template by a triple 〈P ,P ′,H〉 where
P and P ′ are used to form the transformation pattern P ⇒ P ′ and H, called hypothesis, is a
set of equations. A hypothesis H is used to represent lemmas which input TRSs have to satisfy
to guarantee the correctness of transformation.

Currently, no automatic method to produce correct templates is known. In our framework,
after constructing a transformation pattern by generalizing input similar transformations, we
look for an appropriate hypothesis and prove the correctness to construct correct template (Fig.
7.1).

7.1 Generalization of Terms

In this section, we propose a term generalization procedure, called 2nd-Gen, and show its
soundness. 2nd-Gen will be used as a basic module of TRS generalization procedure. We first
give a notion of generalization of two term patterns.

Definition 7.1. Let s and t be term patterns. A term pattern u is a generalization of s and t
if there exist term homomorphisms ϕ1 and ϕ2 such that ϕ1(u) = s and ϕ2(u) = t.

Example 7.2. Let f, g ∈ F , p, q ∈X and x, y, z ∈ V . Then

1. p(x, y) is a generalization of f(x, x) and g(y), since ϕ1(p(x, y))) = f(x, x) and ϕ2(p(x, y)) =
g(y) for ϕ1 = {p 7→ f(�1,�1)}, ϕ2 = {p 7→ g(�2)}.

2. p(z) is a generalization of f(x, x) and g(y), since ϕ1(p(z))) = f(x, x) and ϕ2(p(z)) = g(y)
for ϕ1 = {p 7→ f(�1,�1), z 7→ x}, ϕ2 = {p 7→ g(�1), z 7→ y}.

3. p(q(z)) is a generalization of f(x, x) and g(y), since ϕ1(p(q(z)))) = f(x, x) and ϕ2(p(q(z))) =
g(y) for ϕ1 = {p 7→ f(�1,�1), q 7→ �1, z 7→ x}, ϕ2 = {p 7→ �1, q 7→ g(�1), z 7→ y}.

Our generalization procedure 2nd-Gen given later computes a generalization of two input
term patterns in a non-deterministic way. Table 7.1 explains how two input term patterns
f(g(x), y) and f(z, h(u, w)) are generalized into f(p(v1), q(v2, u)) using 2nd-Gen.

Initially, two input terms f(g(x), y) and f(z, h(u, w)) are coupled into f(g(x), y)∧f(z, h(u, w)),
using a special binary function symbol ∧ (step 1). Since ∧ indicates the position which will
be generalized, nesting of ∧ is not allowed. Next, 2nd-Gen repeats the following process
depending on two symbols α and β immediately below some ∧, until it obtains a solution.

I If α and β are local variables, then the coupled local variables α ∧ β is replaced with a
new local variable. The memorizing function records the association between the coupled
local variables and the introduced local variable.

II If α and β are the same function symbols or pattern variables, then the symbol ∧ is
distributed in each argument.
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III Otherwise, the coupled contexts is replaced with a new pattern variable and the mod-
ified arguments. The memorizing function records the association between the coupled
contexts and the introduced pattern variable.

Var

C[x ∧ y], Φ

C[z]θ, Φ ∪ {x ∧ y 7→ z}

if either
(1) Φ(x ∧ y) = z or
(2) x /∈ range(Φ−1

[1] ), y /∈ range(Φ−1
[2] ), and z is a fresh local variable

where θ = {x := z, y := z} is a substitution.
Div

C[p(s1, . . . , sn) ∧ p(t1, . . . , tn)], Φ

C[p(s1 ∧ t1, . . . , sn ∧ tn)], Φ
if p ∈ F ∪X

Gen

C[C1〈s1, . . . , sn〉 ∧ C2〈t1, . . . , tn〉], Φ

C[p(α1, . . . , αn)], Φ ∪ {C1 ∧ C2 7→ p}

if either Φ(C1 ∧ C2) = p or
(1) C1, C2 ∈ T �

n (F ∪X ), C1 6= C2,
(2) p is a fresh (n-ary) pattern variable
(3) C1 ∧ C2 /∈ dom(Φ)
(4) H (C1) ∪H (C2) = {�1, . . . ,�n}, and

(5) αi =







si ∧ ti if �i ∈H (C1) ∩H (C2)
Φ[1](si) if �i ∈H (C1) \H (C2)
Φ[2](ti) if �i ∈H (C2) \H (C1)

Figure 7.2: Inference rules of 2nd-Gen

Let ∧ be a special binary function symbol. A coupled term pattern is defined as follows.

Definition 7.3. The set T∧(F ∪ X , V ) of coupled term patterns is defined as follow: (i)
T(F ∪X , V ) ⊆ T∧(F ∪X , V ); (ii) s, t ∈ T(F ∪X , V ) implies s∧ t ∈ T∧(F ∪X , V ); (iii) if
s1, . . . , sn ∈ T∧(F ∪X , V ), p ∈ F ∪X and arity(p) = n then p(s1, . . . , sn) ∈ T∧(F ∪X , V ).

From the definition it is clear that every coupled term patten has no nested ∧ symbols. A
coupled term pattern t is ∧-free if t ∈ T(F ∪X , V ). A coupled term pattern t is ∧-top if
t = t′ ∧ t′′ for some t′, t′′ ∈ T(F ∪X , V ).

Each term homomorphism ϕ and each substitution θ are extended to coupled term patterns
by ϕ(s ∧ t) = ϕ(s) ∧ ϕ(t) and θ(s ∧ t) = s ∧ t respectively. Note that the symbol ∧ cancels
the substitution to the term patterns below it (i.e. θ(s ∧ t) 6= θ(s) ∧ θ(t) in general). The set
T∧(F ∪X ∪H , V ) is defined similarly.

Definition 7.4. Let t be a coupled term pattern. For i = 1, 2, the (first and second) projection
πi(t) of t is defined as follows:

πi(t) =















t if t ∈ T(F ∪X , V )
p(πi(s1), . . . , πi(sn))

if t = p(s1, . . . , sn) for p ∈ F ∪X

si if t = s1 ∧ s2

Example 7.5. Let f, g ∈ F and x, y ∈ V . Then s1 = f(x, x) ∧ g(y), s2 = f(x ∧ y, x),
s3 = f(x∧ y, x∧ g(y)) are coupled term patterns but f(x∧ (x∧ y), x) is not because it has nested
∧ symbols. The ∧-top subterms of s3 are x ∧ y and x ∧ g(y). Also, we have π1(s1) = π1(s2) =
π1(s3) = f(x, x), π2(s1) = g(y), π2(s2) = f(y, x), and π2(s3) = f(y, g(y)).
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From the definition the following properties of the projection are obtained easily.

Lemma 7.6. Let i = 1 or 2.

1. If s is ∧-free then πi(s) = s.

2. For any term homomorphism ϕ and coupled term pattern s, πi(ϕ(s)) = ϕ(πi(s)).

3. For any coupled term pattern C[s1 ∧ s2], πi(C[s1 ∧ s2]) = πi(C[si]).

The memorizing function Φ, which records the association between the coupled contexts (the
coupled local variables) and the introduced pattern variables (the introduced local variables,
respectively), is carried along with the coupled term pattern during the generalization.

Definition 7.7. A memorizing function is a partial mapping Φ from {C1 ∧ C2 | C1, C2 ∈
T�(F ∪X )} ∪ {x∧ y | x, y ∈ V } to X ∪ V such that (1) Φ(x∧ y) ∈ V and Φ(C1 ∧C2) ∈X ,
(2) Φ(x ∧ y) and Φ(C1 ∧C2) are fresh local variables and pattern variables (i.e., different from
all the variables already used), respectively, (3) x∧y, x∧y′ ∈ dom(Φ) (or y∧x, y′∧x ∈ dom(Φ)
) implies y = y′, (4) If C1∧C2 7→ p ∈ Φ and arity(p) = n, then C1 6= C2, C1, C2 ∈ T �

n (F ∪X ),
and H (C1) ∪H (C2) = {�1, . . . ,�n}.

For a memorizing function Φ, its inverse projection is a term homomorphism defined by
Φ−1

[i] = {u 7→ si | s1 ∧ s2 7→ u ∈ Φ}, and its local projection is a substitution defined by

Φ[i] = {xi := z | x1 ∧ x2 7→ z ∈ Φ, z ∈ V }. From the condition (3) of the memorizing function,
the local projection Φ[i] is well-defined.

The memorization function has the next property which follows immediately from the defi-
nition.

Lemma 7.8. Let Φ be a memorizing function. Let s be a ∧-free term such that V (s) ∩
range(Φ) = ∅. Then Φ−1

[i] (Φ[i](s)) = s.

The generalization procedure 2nd-Gen works on pairs 〈s, Φ〉 of a coupled term pattern s
and a memorizing function Φ. Figure 7.2 gives the inference rules of 2nd-Gen. For pairs 〈s, Φ〉
and 〈s′, Φ′〉, we write 〈s, Φ〉 〈s′, Φ′〉 when 〈s′, Φ′〉 is obtained from 〈s, Φ〉 by applying one of

the inference rules in Figure 7.2. The reflexive transitive closure of  is denoted by
∗
 .

The generalization procedure 2nd-Gen is given as follows:
procedure 2nd-Gen
Input: term patterns s and t
begin

1. Rename local variables of s and t so that
V (s) and V (t) are disjoint.

2. Compute 〈s ∧ t, ∅〉
∗
 〈u, Φ〉 until u

becomes ∧-free.
3. Output a term pattern u

end.
Since there exist several possibilities for applying the rule Gen, two input term patterns

s and t may have more than one generalization. For example, p(u, u) and q(h, v) are general-
izations of f(a, x) and g(y, y). We note that for a given coupled term pattern the number of
possible combinations of C1 and C2 in the rule Gen is finite, because of the condition (4) of
Gen.

Lemma 7.9. The procedure 2nd-Gen is well-defined.
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Proof. It suffices to show that if Φ is a memorizing function and 〈s, Φ〉  〈s′, Φ′〉 then Φ′ is
again a memorizing function. We distinguish cases by the inference rule applied in the step
〈s, Φ〉 〈s′, Φ′〉.

(Var) The case x∧y 7→ z ∈ Φ is obvious. Suppose x∧y 7→ z /∈ Φ. Then Φ′ = Φ∪{x∧y 7→ z},
x /∈ range(Φ−1

[1] ), y /∈ range(Φ−1
[2] ), and z is a fresh local variable. Clearly, Φ′ is a partial

mapping from {C1 ∧ C2 | C1, C2 ∈ T�(F ∪X )} ∪ {x ∧ y | x, y ∈ V } to X ∪ V . The
conditions (1),(2),(4) are clearly satisfied. The condition (3) follows since x /∈ range(Φ−1

[1] )

and y /∈ range(Φ−1
[2] ).

(Div) Since Φ′ = Φ, the claim follows immediately.

(Gen) The case C1 ∧ C2 7→ p ∈ Φ is obvious. So, suppose C1 ∧ C2 7→ p /∈ Φ. By C1, C2 ∈
T�(F ∪X ), Φ′ is a partial mapping {C1∧C2 | C1, C2 ∈ T�(F ∪X )}∪{x∧y | x, y ∈ V }
to X ∪ V . It is easy to check the conditions (1),(2),(3),(4) are satisfied.

Example 7.10. We present some examples of the derivation of 2nd-Gen. Recall that the
symbol ∧ cancels the substitution θ, that is, θ(s ∧ t) = s ∧ t.

1. 〈f(x, x, x) ∧ g(y, y), ∅〉  Gen 〈p(x ∧ y, x, x ∧ y), {f(�1,�2,�3) ∧ g(�1,�3) 7→ p}〉  Var

〈p(z, z, x∧y), {f(�1,�2,�3)∧g(�1,�3) 7→ p, x∧y 7→ z}〉 Var 〈p(z, z, z), {f(�1,�2,�3)∧
g(�1,�3) 7→ p, x ∧ y 7→ z}〉.

2. 〈f(x, h(x))∧f(y, g(y)), ∅〉  Div 〈f(x∧y, h(x)∧g(y)), ∅〉  Var 〈f(z, h(x)∧g(y)), {x∧y 7→
z}〉  Gen 〈f(z, q(x ∧ y)), {x ∧ y 7→ z, h(�1) ∧ g(�1) 7→ q}〉  Var 〈f(z, q(z)), {x ∧ y 7→
z, h(�1) ∧ g(�1) 7→ q}〉.

We next show that the procedure 2nd-Gen eventually terminates for any input, by using
the following measure.

Definition 7.11. For t ∈ T∧(F ∪X , V ), the weight w(t) of a coupled term pattern t is a
multiset of natural numbers defined as follows:

w(t) =















[ ] if t ∈ T(F ∪X , V )
⊔n

i=1 w(si) if t = p(s1, . . . , sn)
with p ∈ F ∪X

[ |s1|+ |s2| ] if t = s1 ∧ s2

where |s| denotes the number of symbol occurrences.

Theorem 7.12. The procedure 2nd-Gen terminates for any input.

Proof. It suffices to show  is well-founded. Thus, we prove that 〈s, Φ〉  〈s′, Φ′〉 implies
w(s)� w(s′) where � is the multiset extension of >[1]. We distinguish cases by the inference
rule applied in the step 〈s, Φ〉 〈s′, Φ′〉.

(Var) One occurrence of x∧y is replaced by z, and thus w(s) = w(s′)t[2]. Hence w(s)� w(s′).

(Div) One occurrence of p(s1, . . . , sn)∧p(t1, . . . , tn) is replaced by p(s1∧ t1, . . . , sn∧ tn). Since
|p(s1, . . . , sn)∧p(t1, . . . , tn)| = |s1|+· · ·+|sn|+|t1|+· · ·+|tn|+2 and [|s1∧t1|, . . . , |sn∧tn|] =
[|s1|+ |t1|, . . . , |sn|+ |tn|], we have w(s)� w(s′).
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(Gen) In this case, we have w(p(α1, . . . , αn)) = [|si| + |ti| | �i ∈ H (C1) ∩ H (C2)] and
w(C1〈s1, . . . , sn〉∧C2〈t1, . . . , tn〉) = [|C1〈s1, . . . , sn〉|+|C2〈t1, . . . , tn〉|]. Since�i ∈H (C1)∩
H (C2) implies siEC1〈s1, . . . , sn〉 and tiEC2〈t1, . . . , tn〉, |C1〈s1, . . . , sn〉|+|C2〈t1, . . . , tn〉| ≥
|si| + |ti| for i such that �i ∈ H (C1) ∩H (C2). Thus the case si 6= C1〈s1, . . . , sn〉 or
ti 6= C2〈t1, . . . , tn〉 follows clearly. If si = C1〈s1, . . . , sn〉 and ti = C2〈t1, . . . , tn〉 then
C1 = �1 = C2, thus this case does not happen by the condition of the inference rule.

Now we show the soundness of the procedure 2nd-Gen, that is, every output of 2nd-Gen
is a generalization of two input term patterns. The following lemma is shown easily.

Lemma 7.13. For any indexed context C such that �i /∈ H (C) and any term patterns
s1, . . . , sn, ti, C〈s1, . . . , si, . . . , sn〉 = C〈s1, . . . , ti, . . . , sn〉.

We now prove the main lemma for the soundness theorem.

Lemma 7.14. Let 〈s, Φ〉 〈s′, Φ′〉. Let V1 and V2 be disjoint sets of local variables. Suppose
that, for i ∈ {1, 2}, (1) V (Φ−1

[i] (πi(s))) ⊆ Vi and (2) for any ∧-top subterm u1 ∧ u2 of s,

V (ui) ⊆ Vi. Then, for each i ∈ {1, 2}, Φ−1
[i] (πi(s)) = Φ′−1

[i] (πi(s
′)). Also, conditions (1) and (2)

hold for Φ′ and s′.

Proof. We distinguish cases by the inference rule applied in the step 〈s, Φ〉 〈s′, Φ′〉. We show
only Φ−1

[1] (π1(s)) = Φ′−1
[1] (π1(s

′)) in each case. The case i = 2 is shown similarly.

(Var) We have s = C[x ∧ y], s′ = C[z]θ where θ = {x := z, y := z} is a substitution, and
Φ′ = Φ ∪ {x ∧ y 7→ z} for some C, x, y. Then

Φ−1
[1] (π1(s))

=Φ−1
[1] (π1(C[x ∧ y]))

=Φ−1
[1] (π1(C)[x]) by Lemma 7.6 (3)

= (Φ−1
[1] (π1(C)))[Φ−1

[1] (x), . . . , Φ−1
[1] (x)]

= (Φ−1
[1] (π1(C{y := z})))[. . .] by y ∈ V2

=(Φ−1
[1] ∪ {z 7→ x}(π1(Cθ)))[. . .]

= (Φ′−1
[1] (π1(Cθ)))[Φ−1

[1] (x), . . . , Φ−1
[1] (x)]

= (Φ′−1
[1] (π1(Cθ)))[Φ−1

[1] ∪ {z 7→ x}(z), . . .]

= (Φ′−1
[1] (π1(Cθ)))[Φ′−1

[1] (z), . . . , Φ′−1
[1] (z)]

=Φ′−1
[1] (π1(Cθ[z]))

=Φ′−1
[1] (π1(C[z]θ))

=Φ′−1
[1] (π1(s

′))

Clearly, conditions (1),(2) hold for Φ′ and s′.

(Div) We have s = C[p(s1, . . . , sn) ∧ p(t1, . . . , tn)] and s′ = C[p(s1 ∧ t1, . . . , sn ∧ tn)] for some
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C, p, s1, . . . , tn and Φ = Φ′. Then

Φ−1
[1] (π1(s))

= Φ−1
[1] (π1(C[p(s1, . . . , sn)

∧p(t1, . . . , tn)]))
= Φ−1

[1] (π1(C[p(s1, . . . , sn))]))

by Lemma 7.6 (3)
= Φ−1

[1] (π1(C[p(s1 ∧ t1, . . . , sn ∧ tn)]))

by applying Lemma 7.6 (3) repeatedly
= Φ−1

[1] (π1(s
′))

= Φ′−1
[1] (π1(s

′))

Clearly, conditions (1),(2) hold for Φ′ and s′.

(Gen) We have s = C[C1〈s1, . . . , sn〉 ∧ C2〈t1, . . . , tn〉], s′ = C[p(α1, . . . , αn)], Φ′ = Φ ∪ {C1 ∧
C2 7→ p} for some C, C1, C2, p, s1, . . . , tn. Then

Φ−1
[1] (π1(s))

= Φ−1
[1] (π1(C[C1〈s1, . . . , sn〉

∧C2〈t1, . . . , tn〉]))
= Φ−1

[1] (π1(C[C1〈s1, . . . , sn〉]))

by Lemma 7.6 (3)
= π1(Φ

−1
[1] (C[C1〈s1, . . . , sn〉]))

by Lemma 7.6 (2)
= π1(Φ

−1
[1] (C)[Φ−1

[1] (C1〈s1, . . . , sn〉),

. . .Φ−1
[1] (C1〈s1, . . . , sn〉)])

= π1(Φ
−1
[1] (C)[C1〈s1, . . . , sn〉

. . . C1〈s1, . . . , sn〉])

since variables in dom(Φ−1
[1] ) are fresh. We now show that π1(C1〈. . . si . . .〉) = π1(C1〈. . . Φ

′−1
[1] (αi) . . .〉))

holds for any i. We distinguish three cases.

(a) Case of �i ∈H (C1) ∩H (C2). Then

π1(C1〈. . . si . . .〉)
= π1(C1〈. . . si ∧ ti . . .〉)
= π1(C1〈. . . Φ

′−1
[1] (si ∧ ti) . . .〉)

= π1(C1〈. . . Φ
′−1
[1] (αi) . . .〉)

(b) Case of �i ∈H (C1) \H (C2).

π1(C1〈. . . si . . .〉)
= π1(C1〈. . . Φ

′−1
[1] (Φ[1](si)) . . .〉)

by Lemma 7.8
= π1(C1〈. . . Φ

′−1
[1] (αi) . . .〉)

(c) Case of�i ∈H (C2)\H (C1). Then since�i /∈H (C1), by Lemma 7.13, π1(C1〈. . . si . . .〉) =
π1(C1〈. . . Φ

′−1
[1] (αi) . . .〉).
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Hence
π1(Φ

−1
[1] (C)[C1〈s1, . . . , sn〉,

. . . C1〈s1, . . . , sn〉])
=π1(Φ

′−1
[1] (C)[C1〈Φ

′−1
[1] (α1), . . . , 〉,

. . . C1〈Φ
′−1
[1] (α1), . . . , 〉])

=π1(Φ
′−1
[1] (C)[Φ′−1

[1] (p(α1, . . . , αn)),

. . . Φ′−1
[1] (p(α1, . . . , αn))])

=π1(Φ
′−1
[1] (C[p(α1, . . . , αn)]))

=Φ′−1
[1] (π1(C[p(α1, . . . , αn)]))

by Lemma 7.6 (2)
=Φ′−1

[1] (π1(s
′))

Clearly, conditions (1),(2) hold for Φ′ and s′.

Now we have the following soundness theorem of 2nd-Gen.

Theorem 7.15. Suppose 〈s ∧ t, ∅〉
∗
 〈u, Φ〉 and V (s) ∩ V (t) = ∅. If u is ∧-free then u is a

generalization of s and t. Moreover, Φ−1
[1] (u) = s and Φ−1

[2] (u) = t.

Proof. By the assumption V (s) ∩ V (t) = ∅, we can apply Lemma 7.14 repeatedly so to obtain
Φ−1

[1] (π1(u)) = s and Φ−1
[2] (π2(u)) = t. Since u is ∧-free, π1(u) = π2(u) = u by Lemma 7.6 (1).

Thus Φ−1
[1] (u) = s and Φ−1

[2] (u) = t. This means that u is a generalization of s and t.

7.2 Generalization of TRSs

In this section, we give the TRS generalization procedure TRS-Gen based on the term gener-
alization procedure 2nd-Gen given in the previous section. We also present heuristics to drop
solutions of generalization useless for constructing transformation patterns.

TRS-Gen generalizes two TRSs with an input memorizing function by generalizing each
rewrite rule in sequence. A rewrite rule is treated as a term pattern whose root symbol is → in
TRS-Gen. A memorizing function which is an input of TRS-Gen is used to keep consistent
with the preceding generalizations.

Definition 7.16. Let R1 = {l1 → r1, . . . , ln → rn} and R2 = {l′1 → r′1, . . . , l
′
n → r′n} be

TRS patterns over F and → a special binary function symbol such that → /∈ F . The TRS
generalization procedure TRS-Gen is given as follows:
Input: TRS patterns R1 and R2 and

a memorizing function Φ.
begin

1. Rename local variables so that sets of
local variables of each rewrite rule
in R1 and R2 are mutually disjoint.

2. Φ0 = Φ
3. For(i = 0 to i = n)

begin
Compute l̃i → r̃i where
〈→(li ∧ l′i, ri ∧ r′i), Φi−1〉

∗
 〈→(l̃i, r̃i), Φi〉

using 2nd-Gen.
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end
4. Output R̃ = {l̃1 → r̃1, . . . , l̃n → r̃n}

and Φn.
end

The following is a corollary of Theorem 7.15.

Theorem 7.17. Let R̃ and Φ̃ be outputs of TRS-Gen whose inputs are R1, R2 and Φ. R̃ is
a generalization of R1 and R2. More precisely, Φ−1

[1] (R̃) = R1, Φ−1
[2] (R̃) = R2 (up to renaming

local variables) and Φ ⊆ Φ̃.

We have implemented 2nd-Gen and TRS-Gen using modules of program transformation
system RAPT and performed experiments. It turned out that our algorithms tend to produce
many solutions which are obviously useless to make transformation patterns. For example, the
number of solutions of a generalization of sum(cons(x, xs)) and cat(cons(y, ys)) is over 1,000.
Furthermore, it contains many solutions such as p(sum(cons(x, xs)), cat(cons(y, ys))) which are
obviously useless for transformation patterns.

Even if many solutions of generalization are obtained, they have to be enriched into correct
templates by adding appropriate hypotheses in order to use for program transformation. Since
such enrichment is not always possible, it is preferred that obviously useless solutions are omitted
beforehand. Below, we report several heuristics which work well in our experiment.

We first introduce two notions that are necessary for describing our heuristics. A notion of
I-match is useful to reduce possibilities of application of Gen.

Definition 7.18. Let C ∈ T�
n (F ∪X ) be an indexed context, and t ∈ T(F ∪X , V ) a term

pattern. We say C I-matches to t if there exist term patterns s1, . . . , sn such that C〈s1, . . . sn〉 =
t.

We note that the notion of I-match is a variant of the first-order matching, which is decidable
and has a unique solution up to renaming local variables.

Definition 7.19. (1) The set of positions of a term s is a set Pos(s) of sequences of integers,
which is inductively defined as follows: (i) If s = x ∈ V , then Pos(s) = {ε} where ε represents
empty sequence; (ii) If s = q(s1, ..., sn), then Pos(s) = {ε} ∪

⋃n
i=1{ip | p ∈ Pos(si)}. (2) Let s

be a term pattern. A position p of s is shallower than a position q of s if |p| ≤ |q|. The position
p is the shallowest and leftmost in t if (i) p is the shallowest in t; (ii) for any shallowest position
q such that q 6= p, there exist p′, i, j, q1, and q2 such that p = p′iq1, q = p′jq2 and i < j.

Our heuristics are as follows:

H1 Gen is applied only when neither Var nor Div can be applied.

H2 For a coupled term pattern s and memorizing function Φ, we chose the shallowest and
leftmost ∧-top subterm to apply 2nd-Gen.

H3 When 〈C[C1〈s1, . . . , sn〉 ∧ C2〈t1, . . . , tn〉], Φ〉  〈C[p(α1, . . . , αn)], Φ′〉 applying Gen, we
restrict that the depth of each indexed context C1 and C2 is equal to or less than 1.

H4 For 〈C[s∧ t], Φ〉, we choose C1 and C2 to apply Gen if there exists C1 ∧C2 7→ p ∈ Φ such
that C1 I-matches to s and C2 I-matches to t.

H5 When H4 cannot be applied to 〈C[s∧ t], Φ〉, we choose C1 and C2 to apply Gen, if there
exist C1, s1, . . . , sn, C2, t1, . . . , tn, k, and C′

1 ∧ C′
2 7→ p ∈ Φ such that s = C1〈s1, . . . , sn〉,

t = C2〈t1, . . . , tn〉, and �k ∈ H (C1) ∩ H (C2), and C′
1 and C′

2 I-match sk and tk,
respectively.
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H6 When H4 and H5 cannot apply to 〈C[s ∧ t], Φ〉, we choose arbitrary indexed contexts
satisfying H3 to apply Gen.

Gen can be applied even when Var or Div can be done. One can obtain more concrete
generalizations by giving higher priority to Var and Div than Gen. Here, we say a term
pattern s is more concrete than a term pattern t if there exists a term homomorphism ϕ such
that ϕ(t) = s. For example, let x, y be local variables. Without heuristics, Var and Gen can
be applied to a pair 〈x ∧ y, ∅〉. If Var is applied then the pair 〈z, {x ∧ y 7→ z}〉 is obtained. If
Gen is applied then the pair 〈p(x, y), {�1∧�2 7→ p}〉 is obtained. The former is more concrete
than the latter.

By H3, the number of possibilities of application for Gen is reduced drastically. For exam-
ple, there are 225 possibilities for applying Gen to 〈+(s(x), y)∧app(cons(z, zs), ws), Φ〉 without
our heuristics while 81 possibilities for applying Gen with heuristic H3 according to our ex-
periment. In our experiments, heuristic H3 seems to work well. However, there may exist
transformations which the depth defined in H3 should be increased.

Intuitively, H4 and H5 force to generalize common patterns by the same pattern variables.
In our experiments, one can obtain more concrete generalizations with helps of H4 and H5.
For example, pars of generalizations of f(f(x)) and g(g(y)) are p(q(v)) and p(p(v)). The latter
is more concrete than the former and produced using H4 and H5.

Below we demonstrate one of the derivations following our heuristics (Fig. 7.3).
Step (a): We choose the shallowest and leftmost ∧-top subterm +(s(x), y)∧app(cons(z, zs), ws)

to apply 2nd-Gen by H2. Var, Div, H4 and H5 cannot apply to this subterm. So, we choose
C1 = +(�1,�2) and C2 = app(�1,�2) to apply Gen to this subterm. As mentioned before,
there are 81 possibilities of applying Gen to this subterm.

Step (b): The shallowest and leftmost ∧-top subterm is s(+(x, y)) ∧ cons(z, app(zs, ws)).
Since +(�1,�2) I-matches to +(x, y) and app(�1,�2) I-matches to app(zs, ws), we choose
C1 = s(�1) and C2 = cons(�2,�1) to apply Gen to this subterm by H5.

Step (c): The shallowest and leftmost ∧-top subterm is s(x) ∧ cons(z, zs). Since s(�1)
I-matches to s(x) and cons(�2,�1) I-matches to cons(z, zs), we choose C1 = s(�1) and C2 =
cons(�2,�1) to apply Gen to this subterm by H4.

Step (d): We apply H2 and H4 as the step (c).
Step (e): The shallowest and leftmost ∧-top subterm is x ∧ zs. We apply Var to this

subterm by H1.
Steps (f), (g), and (h): We apply Var in the way similar to the step (e).

Example 7.20. Let Rsum and Rcat be TRSs which appear in Chapter 3. The following TRS
pattern P̃ is one of outputs of our implementation with heuristics whose inputs are Rsum, Rcat

and ∅:

P̃















p(r) → q

p(p2(u, v)) → p1(u, p(v))
p1(q, v1) → v1

p1(p3(v7, v4), v8) → p3(p1(v7, v8), v4)

The TRS pattern P̃ above is a generalization of Rsum and Rcat.

7.3 Generalization of transformations

In this section, we discuss how to construct transformation templates using our generalization
algorithm.
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A pair 〈R,R′〉 of TRSs is called a TRS transformation. We usually write the TRS trans-
formation 〈R,R′〉 as R ⇒ R′. A transformation pattern P ⇒ P ′ is a generalization of TRS
transformations R1 ⇒ R′

1 and R2 ⇒ R′
2 if there exist term homomorphisms ϕ1, ϕ2 such that

ϕi(P) = Ri and ϕi(P ′) = R′
i (i = 1, 2) up to renaming local variables.

Definition 7.21. Let R1 ⇒ R
′
1 and R2 ⇒ R

′
2 be TRS transformations where |R1| = |R2|,

|R′
1| = |R′

2|. Here, |R| denotes the number of rewrite rules appearing in R. The procedure
Trans-Gen is given as follows:
Input: R1 ⇒R′

1 and R2 ⇒R′
2

begin
1. Compute P and Φ by applying

TRS-Gen to R1, R2 and ∅.
2. Compute P ′ and Φ′ by applying

TRS-Gen to R′
1, R

′
2 and Φ.

3. Output P ⇒ P ′.
end

The following is a corollary of Theorem 7.17.

Theorem 7.22. Let R1 ⇒ R′
1 and R2 ⇒R′

2 be TRS transformations, and P ⇒ P ′ an output
of Trans-Gen whose inputs are R1 ⇒R′

1 and R2 ⇒R′
2. Then P ⇒ P ′ is a generalization of

R1 ⇒R′
1 and R2 ⇒R′

2.

Example 7.23. Applying Trans-Gen to Rsum ⇒ R′
sum and Rcat ⇒ R′

cat which appear in
Section 1, the transformation pattern P̃ ⇒ P̃ ′ is produced where

P̃ ′







































p(v11) → p4(v11, q)
p4(r, v14) → v14

p4(p2(v23, v21), v22)→
p4(v21, p1(v22, v23))

p1(q, v26) → v26

p1(p3(v32, v29), v33)→
p3(p1(v32, v33), v29)

and P̃ is the TRS pattern which appears in Example 7.20. We note that there exists little
difference between P ⇒ P ′ which appears in Section 1 and P̃ ⇒ P̃ ′. But both of them is a
generalization of Rsum ⇒R′

sum and Rcat ⇒R′
cat.

To verify the correctness of transformations automatically, correct templates have to be
constructed. One has to look for an appropriate hypothesis to construct a correct template
from transformation patterns generated by Trans-Gen.

Example 7.24. Let P̃ ⇒ P̃ ′ be the transformation pattern appearing in Example 7.23 and H̃
the following hypothesis.

H̃

{

p1(q, y) ≈ p1(y, q)
p1(x, p1(y, z)) ≈ p1(p1(x, y), z)

It can be shown that the template 〈P̃ , P̃ ′, H̃〉 is correct.

Let us consider another example of generalization.
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Example 7.25. The following TRS transformations Ronesadd ⇒ R′
onesadd and Rlenapp ⇒

R′
lenapp represent the well-known program transformation called fusion transformation.

Ronesadd































onesadd(x, y)→ ones(+(x, y))
ones(0) → nil

ones(s(x)) →
cons(s(0), ones(x))

+(0, x) →x
+(s(x), y) → s(+(x, y))

R′
onesadd















































onesadd(0, u) → ones(u)
onesadd(s(v), w)→

cons(s(0), onesadd(v, w))
ones(0) → nil

ones(s(v)) →
cons(s(0), ones(v))

+(0, u) →u
+(s(v), w) → s(+(v, w))

Rlenapp































lenapp(x, y) → len(app(x, y))
len(nil) → 0

len(cons(x, y))→ s(len(y))
app(nil, y) → y
app(cons(x, y), z)→

cons(x, app(y, z))

R′
lenapp















































lenapp(nil, u) → len(u)
lenapp(cons(u, v), w)→

s(lenapp(v, w))
len(nil) → 0

len(cons(u, v)) → s(len(v))
app(nil, u) →u
app(cons(u, v), w)→

cons(u, app(v, w))

Applying Trans-Gen to Ronesadd ⇒ R′
onesadd and Rlenapp ⇒ R′

lenapp, the transformation
pattern P1 ⇒ P ′

1 is obtained where

P1























p(v, w) → q(r(v, w))
q(p2) → p1

q(p4(v3, v1)) → p3(s(0), q(v3))
r(p2, v6) → v6

r(p4(v12, v9), v13)→ p4(r(v12, v13), v9)

P ′
1







































p(p2, v16) → q(v16)
p(p4(v22, v19), v23)→

p3(s(0), p(v22, v23))
q(p2) → p1

q(p4(v27, v25)) → p3(s(0), q(v27))
r(p2, v30) → v30

r(p4(v36, v33), v37) → p4(r(v36, v37), v33)
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Note that the transformation pattern which is obtained from Ronesadd ⇒R
′
onesadd orRlenapp ⇒

R′
lenapp by replacing function symbols with fresh pattern variables cannot be used as transfor-

mation pattern for the other TRS.

Example 7.26. The TRS Rdoubleadd is transformed to Rdoubleadd′ by the transformation pattern
P1 ⇒ P ′

1 where

Rdoubleadd







































doubleadd(x, y)→
double(+(x, y))

double(0) → 0

double(s(x)) →
s(s(double(x)))

+(0, x) →x
+(s(x), y) → s(+(x, y))

R′
doubleadd































































doubleadd(0, v16)→
double(v16)

doubleadd(s(v22), v23)→
s(s(doubleadd(v22, v23)))

double(0) → 0

double(s(v27))→
s(s(double(v27)))

+(0, v30) → v30

+(s(v36), v37) →
s(+(v36, v37))

Example 7.27. The TRS Rel is transformed to R′
el by the transformation pattern P1 ⇒ P ′

1

where

Rel







































evenlenapp(x, y) → evenlen(app(x, y))
evenlen(nil) → true

evenlen(cons(x, y))→ not(evenlen(y))
app(nil, x) →x
app(cons(x, y), z) → cons(x, app(y, z))
not(true) → false

not(false) → true

R′
el















































































evenlenapp(nil, v16) →
evenlen(v16)

evenlenapp(cons(v19, v22), v23)→
not(evenlenapp(v22, v23))

evenlen(nil) → true

evenlen(cons(v25, v27)) →
not(evenlen(v27))

app(nil, v30) → v30

app(cons(v33, v36), v37)→
cons(v33, app(v36, v37))

not(true) → false

not(false) → true

As mentioned before, templates have to be correct to verify the correctness of transforma-
tions automatically. In this example, it can be shown that the template 〈P1,P

′
1, ∅〉 is a correct

template.
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We now note about the implementation of our generalization algorithm. In our implemen-
tation, TRS transformations which are input of our algorithm are represented by pairs of two
TRSs. The implementation of our generalization algorithm produces all solutions obtained
under the heuristics H1∼H6. Each output of our generalization algorithm is enumerated se-
quentially using the lazy evaluation technique.

7.4 Summary

In this chapter, we gave the term generalization algorithm 2nd-Gen which generalizes two
input terms. The soundness of 2nd-Gen was shown in Theorem 7.15. We then extended
2nd-Gen to the TRS generalization algorithm TRS-Gen which generalizes two input TRSs.
Implementations of 2nd-Gen and TRS-Gen showed that they produce huge number of so-
lutions which includes many unexpected ones. We reported some heuristics (H1∼H6) which
reduce numbers of solutions. Trans-Gen, which generalizes two input transformations was
given by extending TRS-Gen. We also gave examples of transformation templates produced
by Trans-Gen. We checked through experiments that heuristics H1∼H6 help to construct
correct templates.
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Table 7.1: Example of generalization
step coupled term memorizing function

1 ∧

f

g

x

y

f

z h

u w
2 (by II) f

∧

g

x

z

∧

y h

u w
3 (by III) f

p

∧

x z

∧

y h

u w

g(�1) ∧�1 7→ p

4 (by I) f

p

v1

∧

y h

u w

g(�1) ∧�1 7→ p

x ∧ z 7→ v1

5 (by III) f

p

v1

q

∧

y w

u

g(�1) ∧�1 7→ p

x ∧ z 7→ v1

�1 ∧ h(�2,�1) 7→ q

6 (by I) f

p

v1

q

v2 u

g(�1) ∧�1 7→ p

x ∧ z 7→ v1

�1 ∧ h(�2,�1) 7→ q

y ∧ w 7→ v2
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〈→(+(s(x), y) ∧ app(cons(z, zs), ws), s(+(x, y))) ∧ cons(z, app(zs, ws)), {}〉

(a) 〈→(p(s(x) ∧ cons(z, zs), y ∧ ws), s(+(x, y)) ∧ cons(z, app(zs, ws))),
{+(�1,�2) ∧ app(�1,�2) 7→ p}〉

(by H2)

(b)  〈→(p(s(x) ∧ cons(z, zs), y ∧ ws), q(+(x, y) ∧ app(zs, ws), z)),
{

+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

}

〉

(by H2 and H5)

(c)  〈→(p(q(x ∧ zs, z), y ∧ws), q(+(x, y) ∧ app(zs, ws), z)),
{

+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

}

〉

(by H2 and H4)

(d) 〈→(p(q(x ∧ zs, z), y ∧ws), q(p(x ∧ zs, y ∧ ws), z)),
{

+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

}

〉

(by H2 and H4)

(e) 〈→(p(q(u1, z), y ∧ ws), q(p(x ∧ zs, y ∧ ws), z)),






+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

x ∧ zs 7→ u1







〉

(by H1 and H2)

(f) 〈→(p(q(u1, z), u2), q(p(x ∧ zs, y ∧ws), z)),






+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

x ∧ zs 7→ u1 y ∧ws 7→ u2







〉

(by H1 and H2)

(g) 〈→(p(q(u1, z), u2), q(p(u1, y ∧ ws), z)),






+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

x ∧ zs 7→ u1 y ∧ws 7→ u2







〉

(by H1 and H2)

(h) 〈→(p(q(u1, z), u2), q(p(u1, u2), z)),






+(�1,�2) ∧ app(�1,�2) 7→ p

s(�1) ∧ cons(�2,�1) 7→ q

x ∧ zs 7→ u1 y ∧ws 7→ u2







〉

(by H1 and H2)

Figure 7.3: Example of 2nd-Gen with heuristics
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Chapter 8

Conclusion

In this thesis, we proposed a new framework of program transformation by templates based on
term rewriting. Contributions of this thesis are listed as follows:

1. Introducing the notion of correct templates and giving sufficient conditions which guar-
antee the correctness of transformations by correct templates.

2. Proposing 2nd-order pattern matching algorithm Match and show its soundness and
completeness.

3. Implementing our framework as RAPT and checking its operation through examples.

4. Proposing 2nd-order generalization algorithm 2nd-Gen and showing its soundness.

To guarantee the correctness of transformation within our framework, we introduced a
notion of correct templates which are constructed via the step-by-step transformations of TRS
patterns. We then showed that in any transformation of programs using the correct templates
the correctness of transformation could be verified automatically.

We gave a sound and complete term pattern matching algorithm and showed that how our
program transformation is automated using this algorithm. We now compare our framework
for the program transformation and those based on lambda calculus [6, 8, 9, 11, 12, 22].

There is no significant difference between the second-order matching algorithm by Huet
and Lang [12] and ours. However, we preferred organizing the matching algorithm in the
rewriting framework to encoding it based on the lambda calculus framework. Yokoyama et al.
proposed a simpler and efficient matching algorithm for deterministic second-order pattern[27].
By incorporating their ideas to our framework, more efficient and useful algorithm may be
found.

For the correctness proof of the transformation, the most significant difference between our
approach and and those by Huet and Lang is that our approach is based on the operational
semantics while Huet and Lang’s one is on the denotational semantics. The basis of our correct-
ness verification method is inductionless induction in which the Church-Rosser property and
the sufficient completeness of rewriting systems play essential roles. Contrasted to this, Huet
and Lang’s approach is based on the fixpoint induction.

We also described the RAPT system, which implements our framework. RAPT transforms
a term rewriting system according to a specified program transformation template and auto-
matically verifies the correctness of the transformation. Examples of the correct transformation
templates and their application to the transformation of program were also given.
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Another implementation of program transformation using templates is the MAG system,
which is based on lambda calculus [8, 22]. The correctness of transformation in MAG system
is based on Huet and Lang’s framework [12]. MAG supports transformations that include
modifications of expressions and matching with the help of hypothesis; its target also includes
higher-order programs. RAPT does not handle such refinements, and cannot deal with most
of the transformations presented by de Moor and Sittampalam [7, 22]. The difference between
MAG and RAPT, on the other hand, lies in the approach to verifying the hypothesis. Since
such hypotheses are generally different in each transformation, one needs to verify them in all
transformations. MAG system users usually need to verify the hypothesis by explicit induction
in every different transformation. In contrast to this, RAPT proves the hypothesis automatically
without needing the help of users. To the best of our knowledge, the program-transformation
systems based on templates described in the literature have rarely cooperated with automated
theorem-proving techniques in the verification of hypotheses. RAPT involves an interesting
integration of program-transformation and automated theorem-proving techniques.

We have proposed a 2nd-order generalization procedure 2nd-Gen for term patterns and
show its correctness. Based on this procedure, we have given a procedure to construct trans-
formation templates from similar TRS transformations. By using some heuristics, we have
constructed correct templates that are suitable for TRS transformations and correctness check-
ing of transformations.

Plotkin proposed a first-order generalization algorithm[20]. The first-order generalization is
simulated by treating local variables as fresh constant and permitting pattern variables instan-
tiated only term patterns (i.e. indexed contexts without holes). Therefore, our framework is
an extension of first-order generalization. To the best of our knowledge, there is no result of
generalization which is specialized for program transformation.

The notion of program transformation by templates was originally introduced by Huet and
Lang[12]. They showed the method to construct transformation templates manually. After their
work, several results about program transformation by templates have been obtained[6, 8, 27].
In these works, no automated method to construct transformation templates has been proposed.
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