YES (ignored inputs)COMMENT translated from Cops 173 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ max(?x,0) -> ?x, max(0,?y) -> ?y, max(s(?x),s(?y)) -> s(max(?x,?y)), max(?x,?y) -> max(?y,?x), max(?x,?x) -> ?x ] Constructors: {0,s} Defined function symbols: {max} Constructor subsystem: [ ] Rule part & Conj Part: [ max(?x,0) -> ?x, max(0,?y) -> ?y, max(s(?x),s(?y)) -> s(max(?x,?y)) ] [ max(?x,?y) -> max(?y,?x), max(?x,?x) -> ?x ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ 0 : Nat, s : Nat -> Nat, max : Nat,Nat -> Nat ] Rule Part: [ max(?x,0) -> ?x, max(0,?y) -> ?y, max(s(?x),s(?y)) -> s(max(?x,?y)) ] Conjecture Part: [ max(?x,?y) = max(?y,?x), max(?x,?x) = ?x ] Precedence (by weight): {(0,2),(s,0),(max,3)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ max(?x,0) -> ?x, max(0,?y) -> ?y, max(s(?x),s(?y)) -> s(max(?x,?y)) ] Conjectures: [ max(?x,?y) = max(?y,?x), max(?x,?x) = ?x ] STEP 0 ES: [ max(?x,?y) = max(?y,?x), max(?x,?x) = ?x ] HS: [ ] ES0: [ max(?x,?y) = max(?y,?x), max(?x,?x) = ?x ] HS0: [ ] ES1: [ max(?x,?y) = max(?y,?x), max(?x,?x) = ?x ] HS1: [ ] Expand max(?x,?x) = ?x [ 0 = 0, 0 = 0, s(max(?y_3,?y_3)) = s(?y_3) ] ES2: [ 0 = 0, 0 = 0, s(max(?y_3,?y_3)) = s(?y_3), max(?x,?y) = max(?y,?x) ] HS2: [ max(?x,?x) -> ?x ] STEP 1 ES: [ 0 = 0, 0 = 0, s(max(?y_3,?y_3)) = s(?y_3), max(?x,?y) = max(?y,?x) ] HS: [ max(?x,?x) -> ?x ] ES0: [ 0 = 0, 0 = 0, s(?y_3) = s(?y_3), max(?x,?y) = max(?y,?x) ] HS0: [ max(?x,?x) -> ?x ] ES1: [ max(?x,?y) = max(?y,?x) ] HS1: [ max(?x,?x) -> ?x ] Expand max(?x,?y) = max(?y,?x) [ ?x_1 = max(0,?x_1), ?y_2 = max(?y_2,0), s(max(?x_3,?y_3)) = max(s(?y_3),s(?x_3)) ] ES2: [ ?x_1 = max(0,?x_1), ?y_2 = max(?y_2,0), s(max(?x_3,?y_3)) = max(s(?y_3),s(?x_3)) ] HS2: [ max(?x,?y) -> max(?y,?x), max(?x,?x) -> ?x ] STEP 2 ES: [ ?x_1 = max(0,?x_1), ?y_2 = max(?y_2,0), s(max(?x_3,?y_3)) = max(s(?y_3),s(?x_3)) ] HS: [ max(?x,?y) -> max(?y,?x), max(?x,?x) -> ?x ] ES0: [ ?x_1 = ?x_1, ?y_2 = ?y_2, s(max(?x_3,?y_3)) = s(max(?y_3,?x_3)) ] HS0: [ max(?x,?y) -> max(?y,?x), max(?x,?x) -> ?x ] ES1: [ ] HS1: [ max(?x,?y) -> max(?y,?x), max(?x,?x) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/open/173.trs: Success(GCR) (5 msec.)