YES (ignored inputs)COMMENT translated from Cops 83 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), d(0) -> 0, d(s(?x)) -> s(s(d(?x))), f(0) -> 0, f(s(?x)) -> +(+(s(?x),s(?x)),s(?x)), f(g(0)) -> +(+(g(0),g(0)),g(0)), g(?x) -> s(d(?x)) ] Constructors: {0,s} Defined function symbols: {+,d,f,g} Constructor subsystem: [ ] Rule part & Conj Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), d(0) -> 0, d(s(?x)) -> s(s(d(?x))), f(0) -> 0, f(s(?x)) -> +(+(s(?x),s(?x)),s(?x)), g(?x) -> s(d(?x)) ] [ f(g(0)) -> +(+(g(0),g(0)),g(0)) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ + : Nat,Nat -> Nat, 0 : Nat, d : Nat -> Nat, f : Nat -> Nat, g : Nat -> Nat, s : Nat -> Nat ] Rule Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), d(0) -> 0, d(s(?x)) -> s(s(d(?x))), f(0) -> 0, f(s(?x)) -> +(+(s(?x),s(?x)),s(?x)), g(?x) -> s(d(?x)) ] Conjecture Part: [ f(g(0)) = +(+(g(0),g(0)),g(0)) ] Precedence (by weight): {(+,1),(0,4),(d,2),(f,5),(g,6),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), d(0) -> 0, d(s(?x)) -> s(s(d(?x))), f(0) -> 0, f(s(?x)) -> +(+(s(?x),s(?x)),s(?x)), g(?x) -> s(d(?x)) ] Conjectures: [ f(g(0)) = +(+(g(0),g(0)),g(0)) ] STEP 0 ES: [ f(g(0)) = +(+(g(0),g(0)),g(0)) ] HS: [ ] ES0: [ s(s(s(0))) = s(s(s(0))) ] HS0: [ ] ES1: [ ] HS1: [ ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/83.trs: Success(GCR) (19 msec.)