YES (ignored inputs)COMMENT translated from Cops 76 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(0,?x) -> ?x, +(-(?x),?x) -> 0, +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), -(0) -> 0, -(-(?x)) -> ?x, -(+(?x,?y)) -> +(-(?x),-(?y)) ] Constructors: {0} Defined function symbols: {+,-} Constructor subsystem: [ ] Rule part & Conj Part: [ +(0,?x) -> ?x, -(0) -> 0 ] [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(-(?x)) -> ?x, -(+(?x,?y)) -> +(-(?x),-(?y)), +(-(?x),?x) -> 0, +(?x,?y) -> +(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Elem} Signature: [ + : Elem,Elem -> Elem, - : Elem -> Elem, 0 : Elem ] Rule Part: [ +(0,?x) -> ?x, -(0) -> 0 ] Conjecture Part: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(-(?x)) = ?x, -(+(?x,?y)) = +(-(?x),-(?y)), +(-(?x),?x) = 0, +(?x,?y) = +(?y,?x) ] Precedence (by weight): {(+,0),(-,2),(0,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(0,?x) -> ?x, -(0) -> 0 ] Conjectures: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(-(?x)) = ?x, -(+(?x,?y)) = +(-(?x),-(?y)), +(-(?x),?x) = 0, +(?x,?y) = +(?y,?x) ] STEP 0 ES: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(-(?x)) = ?x, -(+(?x,?y)) = +(-(?x),-(?y)), +(-(?x),?x) = 0, +(?x,?y) = +(?y,?x) ] HS: [ ] ES0: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(-(?x)) = ?x, -(+(?x,?y)) = +(-(?x),-(?y)), +(-(?x),?x) = 0, +(?x,?y) = +(?y,?x) ] HS0: [ ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(-(?x)) = ?x, -(+(?x,?y)) = +(-(?x),-(?y)), +(-(?x),?x) = 0, +(?x,?y) = +(?y,?x) ] HS1: [ ] Expand -(-(?x)) = ?x [ -(0) = 0 ] ES2: [ 0 = 0, +(?x,?y) = +(?y,?x), +(-(?x),?x) = 0, -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ -(-(?x)) -> ?x ] STEP 1 ES: [ 0 = 0, +(?x,?y) = +(?y,?x), +(-(?x),?x) = 0, -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ -(-(?x)) -> ?x ] ES0: [ 0 = 0, +(?x,?y) = +(?y,?x), +(-(?x),?x) = 0, -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ -(-(?x)) -> ?x ] ES1: [ +(?x,?y) = +(?y,?x), +(-(?x),?x) = 0, -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ -(-(?x)) -> ?x ] Expand +(-(?x),?x) = 0 [ +(0,0) = 0 ] ES2: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS2: [ +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] STEP 2 ES: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS: [ +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES0: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS0: [ +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS1: [ +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] Expand +(?x,?y) = +(?y,?x) [ ?x_1 = +(?x_1,0) ] ES2: [ ?x_1 = +(?x_1,0), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] STEP 3 ES: [ ?x_1 = +(?x_1,0), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES0: [ ?x_1 = +(?x_1,0), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES1: [ ?x_1 = +(?x_1,0), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] Expand +(?x_1,0) = ?x_1 [ 0 = 0 ] ES2: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS2: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] STEP 4 ES: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES0: [ 0 = 0, +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS0: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS1: [ +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] Expand -(+(?x,?y)) = +(-(?x),-(?y)) [ -(?x_1) = +(-(0),-(?x_1)) ] ES2: [ -(?x_1) = +(-(0),-(?x_1)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] STEP 5 ES: [ -(?x_1) = +(-(0),-(?x_1)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES0: [ -(?x_1) = -(?x_1), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] Expand +(+(?x,?y),?z) = +(?x,+(?y,?z)) [ +(?x_1,?z) = +(0,+(?x_1,?z)) ] ES2: [ +(?x_1,?z) = +(0,+(?x_1,?z)) ] HS2: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] STEP 6 ES: [ +(?x_1,?z) = +(0,+(?x_1,?z)) ] HS: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES0: [ +(?x_1,?z) = +(?x_1,?z) ] HS0: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] ES1: [ ] HS1: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x_1,0) -> ?x_1, +(?x,?y) -> +(?y,?x), +(-(?x),?x) -> 0, -(-(?x)) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/76.trs: Success(GCR) (18 msec.)