YES (ignored inputs)COMMENT translated from Cops 51 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ *(e,?x) -> ?x, *(-(?x),?x) -> e, *(*(?x,?y),?z) -> *(?x,*(?y,?z)), *(-(?x),*(?x,?y)) -> ?y, *(?x,e) -> ?x, -(e) -> e, -(-(?x)) -> ?x, *(?x,-(?x)) -> e, *(?x,*(-(?x),?y)) -> ?y, -(*(?x,?y)) -> *(-(?y),-(?x)) ] Constructors: {e} Defined function symbols: {*,-} Constructor subsystem: [ ] Rule part & Conj Part: [ *(?x,e) -> ?x, -(e) -> e ] [ *(e,?x) -> ?x, *(*(?x,?y),?z) -> *(?x,*(?y,?z)), -(-(?x)) -> ?x, -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),?x) -> e, *(-(?x),*(?x,?y)) -> ?y, *(?x,-(?x)) -> e, *(?x,*(-(?x),?y)) -> ?y ] Rule part & Conj Part: [ *(e,?x) -> ?x, -(e) -> e ] [ *(?x,e) -> ?x, *(*(?x,?y),?z) -> *(?x,*(?y,?z)), -(-(?x)) -> ?x, -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),?x) -> e, *(-(?x),*(?x,?y)) -> ?y, *(?x,-(?x)) -> e, *(?x,*(-(?x),?y)) -> ?y ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Elem} Signature: [ * : Elem,Elem -> Elem, - : Elem -> Elem, e : Elem ] Rule Part: [ *(?x,e) -> ?x, -(e) -> e ] Conjecture Part: [ *(e,?x) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(-(?x)) = ?x, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,-(?x)) = e, *(?x,*(-(?x),?y)) = ?y ] Precedence (by weight): {(*,0),(-,2),(e,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ *(?x,e) -> ?x, -(e) -> e ] Conjectures: [ *(e,?x) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(-(?x)) = ?x, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,-(?x)) = e, *(?x,*(-(?x),?y)) = ?y ] STEP 0 ES: [ *(e,?x) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(-(?x)) = ?x, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,-(?x)) = e, *(?x,*(-(?x),?y)) = ?y ] HS: [ ] ES0: [ *(e,?x) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(-(?x)) = ?x, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,-(?x)) = e, *(?x,*(-(?x),?y)) = ?y ] HS0: [ ] ES1: [ *(e,?x) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(-(?x)) = ?x, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,-(?x)) = e, *(?x,*(-(?x),?y)) = ?y ] HS1: [ ] Expand *(e,?x) = ?x [ e = e ] ES2: [ e = e, *(?x,*(-(?x),?y)) = ?y, *(?x,-(?x)) = e, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), -(-(?x)) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS2: [ *(e,?x) -> ?x ] STEP 1 ES: [ e = e, *(?x,*(-(?x),?y)) = ?y, *(?x,-(?x)) = e, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), -(-(?x)) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS: [ *(e,?x) -> ?x ] ES0: [ e = e, *(?x,*(-(?x),?y)) = ?y, *(?x,-(?x)) = e, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), -(-(?x)) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS0: [ *(e,?x) -> ?x ] ES1: [ *(?x,*(-(?x),?y)) = ?y, *(?x,-(?x)) = e, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), -(-(?x)) = ?x, *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS1: [ *(e,?x) -> ?x ] Expand -(-(?x)) = ?x [ -(e) = e ] ES2: [ e = e, *(*(?x,?y),?z) = *(?x,*(?y,?z)), *(?x,-(?x)) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,*(-(?x),?y)) = ?y ] HS2: [ -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 2 ES: [ e = e, *(*(?x,?y),?z) = *(?x,*(?y,?z)), *(?x,-(?x)) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,*(-(?x),?y)) = ?y ] HS: [ -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ e = e, *(*(?x,?y),?z) = *(?x,*(?y,?z)), *(?x,-(?x)) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,*(-(?x),?y)) = ?y ] HS0: [ -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ *(*(?x,?y),?z) = *(?x,*(?y,?z)), *(?x,-(?x)) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(-(?x),?x) = e, *(-(?x),*(?x,?y)) = ?y, *(?x,*(-(?x),?y)) = ?y ] HS1: [ -(-(?x)) -> ?x, *(e,?x) -> ?x ] Expand *(?x,-(?x)) = e [ *(e,e) = e ] ES2: [ e = e, *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS2: [ *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 3 ES: [ e = e, *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS: [ *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ e = e, *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS0: [ *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y, *(-(?x),?x) = e, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS1: [ *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] Expand *(-(?x),?x) = e [ *(e,e) = e ] ES2: [ e = e, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)), *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y ] HS2: [ *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 4 ES: [ e = e, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)), *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y ] HS: [ *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ e = e, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)), *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y ] HS0: [ *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)), *(?x,*(-(?x),?y)) = ?y, *(-(?x),*(?x,?y)) = ?y ] HS1: [ *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] Expand *(?x,*(-(?x),?y)) = ?y [ *(e,*(e,?y)) = ?y ] ES2: [ ?y = ?y, *(-(?x),*(?x,?y)) = ?y, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS2: [ *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 5 ES: [ ?y = ?y, *(-(?x),*(?x,?y)) = ?y, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS: [ *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ ?y = ?y, *(-(?x),*(?x,?y)) = ?y, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS0: [ *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ *(-(?x),*(?x,?y)) = ?y, -(*(?x,?y)) = *(-(?y),-(?x)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS1: [ *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] Expand *(-(?x),*(?x,?y)) = ?y [ *(e,*(e,?y)) = ?y ] ES2: [ ?y = ?y, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)) ] HS2: [ *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 6 ES: [ ?y = ?y, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)) ] HS: [ *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ ?y = ?y, *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)) ] HS0: [ *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ *(*(?x,?y),?z) = *(?x,*(?y,?z)), -(*(?x,?y)) = *(-(?y),-(?x)) ] HS1: [ *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] Expand -(*(?x,?y)) = *(-(?y),-(?x)) [ -(?x_1) = *(-(e),-(?x_1)) ] ES2: [ -(?x_1) = *(-(e),-(?x_1)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS2: [ -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 7 ES: [ -(?x_1) = *(-(e),-(?x_1)), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS: [ -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ -(?x_1) = -(?x_1), *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS0: [ -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ *(*(?x,?y),?z) = *(?x,*(?y,?z)) ] HS1: [ -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] Expand *(*(?x,?y),?z) = *(?x,*(?y,?z)) [ *(?x_1,?z) = *(?x_1,*(e,?z)) ] ES2: [ *(?x_1,?z) = *(?x_1,*(e,?z)) ] HS2: [ *(*(?x,?y),?z) -> *(?x,*(?y,?z)), -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] STEP 8 ES: [ *(?x_1,?z) = *(?x_1,*(e,?z)) ] HS: [ *(*(?x,?y),?z) -> *(?x,*(?y,?z)), -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES0: [ *(?x_1,?z) = *(?x_1,?z) ] HS0: [ *(*(?x,?y),?z) -> *(?x,*(?y,?z)), -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] ES1: [ ] HS1: [ *(*(?x,?y),?z) -> *(?x,*(?y,?z)), -(*(?x,?y)) -> *(-(?y),-(?x)), *(-(?x),*(?x,?y)) -> ?y, *(?x,*(-(?x),?y)) -> ?y, *(-(?x),?x) -> e, *(?x,-(?x)) -> e, -(-(?x)) -> ?x, *(e,?x) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/51.trs: Success(GCR) (7 msec.)