YES (ignored inputs)COMMENT translated from Cops 169 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(?x,0) -> 0, *(?x,s(?y)) -> +(*(?x,?y),?x), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Constructors: {0,s} Defined function symbols: {*,+} Constructor subsystem: [ ] Rule part & Conj Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), *(?x,0) -> 0, *(?x,s(?y)) -> +(*(?x,?y),?x), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(?x,0) -> 0, *(?x,s(?y)) -> +(*(?x,?y),?x) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(?x,0) -> 0, *(?x,s(?y)) -> +(*(?x,?y),?x), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] Rule part & Conj Part: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), *(?x,0) -> 0, *(?x,s(?y)) -> +(*(?x,?y),?x) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Nat} Signature: [ * : Nat,Nat -> Nat, + : Nat,Nat -> Nat, 0 : Nat, s : Nat -> Nat ] Rule Part: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y) ] Conjecture Part: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), *(?x,0) = 0, *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] Precedence (by weight): {(*,3),(+,2),(0,1),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), *(0,?y) -> 0, *(s(?x),?y) -> +(*(?x,?y),?y) ] Conjectures: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), *(?x,0) = 0, *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] STEP 0 ES: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), *(?x,0) = 0, *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] HS: [ ] ES0: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), *(?x,0) = 0, *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] HS0: [ ] ES1: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), *(?x,0) = 0, *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x), *(?x,?y) = *(?y,?x) ] HS1: [ ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_2,0)) = s(?x_2) ] ES2: [ 0 = 0, s(+(?x_2,0)) = s(?x_2), *(?x,?y) = *(?y,?x), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), *(?x,0) = 0, +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ +(?x,0) -> ?x ] STEP 1 ES: [ 0 = 0, s(+(?x_2,0)) = s(?x_2), *(?x,?y) = *(?y,?x), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), *(?x,0) = 0, +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ +(?x,0) -> ?x ] ES0: [ 0 = 0, s(?x_2) = s(?x_2), *(?x,?y) = *(?y,?x), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), *(?x,0) = 0, +(?x,s(?y)) = s(+(?x,?y)) ] HS0: [ +(?x,0) -> ?x ] ES1: [ *(?x,?y) = *(?y,?x), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), *(?x,0) = 0, +(?x,s(?y)) = s(+(?x,?y)) ] HS1: [ +(?x,0) -> ?x ] Expand *(?x,0) = 0 [ 0 = 0, +(*(?x_4,0),0) = 0 ] ES2: [ 0 = 0, *(?x_4,0) = 0, +(?x,s(?y)) = s(+(?x,?y)), *(?x,?y) = *(?y,?x), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS2: [ *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 2 ES: [ 0 = 0, *(?x_4,0) = 0, +(?x,s(?y)) = s(+(?x,?y)), *(?x,?y) = *(?y,?x), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS: [ *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ 0 = 0, 0 = 0, +(?x,s(?y)) = s(+(?x,?y)), *(?x,?y) = *(?y,?x), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS0: [ *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ +(?x,s(?y)) = s(+(?x,?y)), *(?x,?y) = *(?y,?x), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,?y) = +(?y,?x) ] HS1: [ *(?x,0) -> 0, +(?x,0) -> ?x ] Expand *(?x,?y) = *(?y,?x) [ 0 = *(?y_3,0), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)) ] ES2: [ 0 = *(?y_3,0), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 3 ES: [ 0 = *(?y_3,0), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ 0 = 0, +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), +(?x,s(?y)) = s(+(?x,?y)) ] HS0: [ *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(?x,?y) = +(?y,?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), +(?x,s(?y)) = s(+(?x,?y)) ] HS1: [ *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Expand +(?x,?y) = +(?y,?x) [ ?y_1 = +(?y_1,0), s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)) ] ES2: [ ?y_1 = +(?y_1,0), s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?x,?y)), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)) ] HS2: [ +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 4 ES: [ ?y_1 = +(?y_1,0), s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?x,?y)), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)) ] HS: [ +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ ?y_1 = ?y_1, s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?x,?y)), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)) ] HS0: [ +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ s(+(?x_2,?y_2)) = +(?y_2,s(?x_2)), +(?x,s(?y)) = s(+(?x,?y)), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)) ] HS1: [ +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Expand +(?y_2,s(?x_2)) = s(+(?x_2,?y_2)) [ s(?x) = s(+(?x,0)), s(+(?x_2,s(?x))) = s(+(?x,s(?x_2))) ] ES2: [ s(?x) = s(+(?x,0)), s(+(?x_2,s(?x))) = s(+(?x,s(?x_2))), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 5 ES: [ s(?x) = s(+(?x,0)), s(+(?x_2,s(?x))) = s(+(?x,s(?x_2))), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ s(?x) = s(?x), s(s(+(?x,?x_2))) = s(s(+(?x_2,?x))), +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x), s(+(?y,?x)) = s(+(?x,?y)) ] HS0: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ +(*(?x_4,?y_4),?y_4) = *(?y_4,s(?x_4)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), *(?x,s(?y)) = +(*(?x,?y),?x) ] HS1: [ +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Expand *(?y_4,s(?x_4)) = +(*(?x_4,?y_4),?y_4) [ 0 = +(*(?x,0),0), +(*(?x_4,s(?x)),s(?x)) = +(*(?x,s(?x_4)),s(?x_4)) ] ES2: [ 0 = +(*(?x,0),0), s(+(?x,*(?x_4,s(?x)))) = +(*(?x,s(?x_4)),s(?x_4)), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 6 ES: [ 0 = +(*(?x,0),0), s(+(?x,*(?x_4,s(?x)))) = +(*(?x,s(?x_4)),s(?x_4)), *(?x,s(?y)) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ 0 = 0, s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))), +(*(?y,?x),?x) = +(*(?x,?y),?x), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Expand +(+(?x,?y),?z) = +(?x,+(?y,?z)) [ +(?y_1,?z) = +(0,+(?y_1,?z)), +(s(+(?x_2,?y_2)),?z) = +(s(?x_2),+(?y_2,?z)) ] ES2: [ +(?y_1,?z) = +(0,+(?y_1,?z)), s(+(+(?x_2,?y_2),?z)) = +(s(?x_2),+(?y_2,?z)), s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))) ] HS2: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 7 ES: [ +(?y_1,?z) = +(0,+(?y_1,?z)), s(+(+(?x_2,?y_2),?z)) = +(s(?x_2),+(?y_2,?z)), s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))) ] HS: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ +(?y_1,?z) = +(?y_1,?z), s(+(+(?x_2,?y_2),?z)) = s(+(?x_2,+(?y_2,?z))), s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))) ] HS0: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))) ] HS1: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Expand s(+(?x,+(*(?x,?x_4),?x_4))) = s(+(?x_4,+(*(?x_4,?x),?x))) [ s(+(0,+(0,?y_7))) = s(+(?y_7,+(*(?y_7,0),0))), s(+(s(?x_8),+(+(*(?x_8,?y_8),?y_8),?y_8))) = s(+(?y_8,+(*(?y_8,s(?x_8)),s(?x_8)))) ] ES2: [ s(?y_7) = s(+(?y_7,+(*(?y_7,0),0))), s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) = s(+(?y_8,+(*(?y_8,s(?x_8)),s(?x_8)))) ] HS2: [ s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 8 ES: [ s(?y_7) = s(+(?y_7,+(*(?y_7,0),0))), s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) = s(+(?y_8,+(*(?y_8,s(?x_8)),s(?x_8)))) ] HS: [ s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ s(?y_7) = s(?y_7), s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) = s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))) ] HS0: [ s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) = s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))) ] HS1: [ s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Expand s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) = s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))) [ s(s(+(0,+(+(?y_3,?y_3),0)))) = s(s(+(*(0,?y_3),+(?y_3,+(0,?y_3))))), s(s(+(+(*(?x_4,?y_4),?y_4),+(+(?y_4,?y_4),s(?x_4))))) = s(s(+(*(s(?x_4),?y_4),+(?y_4,+(s(?x_4),?y_4))))) ] ES2: [ s(s(+(?y_3,?y_3))) = s(s(+(*(0,?y_3),+(?y_3,+(0,?y_3))))), s(s(s(+(+(+(?y_4,?y_4),+(?x_4,?y_4)),*(?x_4,?y_4))))) = s(s(+(*(s(?x_4),?y_4),+(?y_4,+(s(?x_4),?y_4))))) ] HS2: [ s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) -> s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))), s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] STEP 9 ES: [ s(s(+(?y_3,?y_3))) = s(s(+(*(0,?y_3),+(?y_3,+(0,?y_3))))), s(s(s(+(+(+(?y_4,?y_4),+(?x_4,?y_4)),*(?x_4,?y_4))))) = s(s(+(*(s(?x_4),?y_4),+(?y_4,+(s(?x_4),?y_4))))) ] HS: [ s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) -> s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))), s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES0: [ s(s(+(?y_3,?y_3))) = s(s(+(?y_3,?y_3))), s(s(s(+(+(+(?y_4,?y_4),+(?x_4,?y_4)),*(?x_4,?y_4))))) = s(s(s(+(+(+(?x_4,?y_4),+(?y_4,?y_4)),*(?x_4,?y_4))))) ] HS0: [ s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) -> s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))), s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] ES1: [ ] HS1: [ s(s(+(*(?x_8,?y_8),+(+(?y_8,?y_8),?x_8)))) -> s(s(+(*(?x_8,?y_8),+(?y_8,+(?x_8,?y_8))))), s(+(?x,+(*(?x,?x_4),?x_4))) -> s(+(?x_4,+(*(?x_4,?x),?x))), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), *(?y_4,s(?x_4)) -> +(*(?x_4,?y_4),?y_4), +(?y_2,s(?x_2)) -> s(+(?x_2,?y_2)), +(?x,?y) -> +(?y,?x), *(?x,?y) -> *(?y,?x), *(?x,0) -> 0, +(?x,0) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/169.trs: Success(GCR) (53 msec.)