YES (ignored inputs)COMMENT translated from Cops 168 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Constructors: {0,p,s} Defined function symbols: {+} Constructor subsystem: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,+(?y,?z)) -> +(+(?x,?y),?z) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int} Signature: [ + : Int,Int -> Int, 0 : Int, p : Int -> Int, s : Int -> Int ] Rule Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)) ] Conjecture Part: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] Precedence (by weight): {(+,2),(0,3),(p,1),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)) ] Conjectures: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] STEP 0 ES: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS: [ ] ES0: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS0: [ ] ES1: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS1: [ ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5) ] ES2: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ +(?x,0) -> ?x ] STEP 1 ES: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ +(?x,0) -> ?x ] ES0: [ 0 = 0, s(?x_4) = s(?x_4), p(?x_5) = p(?x_5), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS0: [ +(?x,0) -> ?x ] ES1: [ +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS1: [ +(?x,0) -> ?x ] Expand +(?x,p(?y)) = p(+(?x,?y)) [ p(?y) = p(+(0,?y)), s(+(?x_4,p(?y))) = p(+(s(?x_4),?y)), p(+(?x_5,p(?y))) = p(+(p(?x_5),?y)) ] ES2: [ p(?y) = p(+(0,?y)), s(+(?x_4,p(?y))) = p(+(s(?x_4),?y)), p(+(?x_5,p(?y))) = p(+(p(?x_5),?y)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 2 ES: [ p(?y) = p(+(0,?y)), s(+(?x_4,p(?y))) = p(+(s(?x_4),?y)), p(+(?x_5,p(?y))) = p(+(p(?x_5),?y)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ p(?y) = p(?y), +(?x_4,?y) = +(?x_4,?y), p(p(+(?x_5,?y))) = p(p(+(?x_5,?y))), +(?x,s(?y)) = s(+(?x,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ +(?x,s(?y)) = s(+(?x,?y)), +(?x,+(?y,?z)) = +(+(?x,?y),?z), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Expand +(?x,s(?y)) = s(+(?x,?y)) [ s(?y) = s(+(0,?y)), s(+(?x_4,s(?y))) = s(+(s(?x_4),?y)), p(+(?x_5,s(?y))) = s(+(p(?x_5),?y)) ] ES2: [ s(?y) = s(+(0,?y)), s(+(?x_4,s(?y))) = s(+(s(?x_4),?y)), p(+(?x_5,s(?y))) = s(+(p(?x_5),?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS2: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 3 ES: [ s(?y) = s(+(0,?y)), s(+(?x_4,s(?y))) = s(+(s(?x_4),?y)), p(+(?x_5,s(?y))) = s(+(p(?x_5),?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ s(?y) = s(?y), s(s(+(?x_4,?y))) = s(s(+(?x_4,?y))), +(?x_5,?y) = +(?x_5,?y), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS0: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS1: [ +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Expand +(+(?x,?y),?z) = +(?x,+(?y,?z)) [ +(?y_3,?z) = +(0,+(?y_3,?z)), +(s(+(?x_4,?y_4)),?z) = +(s(?x_4),+(?y_4,?z)), +(p(+(?x_5,?y_5)),?z) = +(p(?x_5),+(?y_5,?z)) ] ES2: [ +(?y_3,?z) = +(0,+(?y_3,?z)), s(+(+(?x_4,?y_4),?z)) = +(s(?x_4),+(?y_4,?z)), p(+(+(?x_5,?y_5),?z)) = +(p(?x_5),+(?y_5,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS2: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] STEP 4 ES: [ +(?y_3,?z) = +(0,+(?y_3,?z)), s(+(+(?x_4,?y_4),?z)) = +(s(?x_4),+(?y_4,?z)), p(+(+(?x_5,?y_5),?z)) = +(p(?x_5),+(?y_5,?z)), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES0: [ +(?y_3,?z) = +(?y_3,?z), s(+(+(?x_4,?y_4),?z)) = s(+(?x_4,+(?y_4,?z))), p(+(+(?x_5,?y_5),?z)) = p(+(?x_5,+(?y_5,?z))), +(?x,+(?y,?z)) = +(+(?x,?y),?z) ] HS0: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] ES1: [ ] HS1: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,0) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/168.trs: Success(GCR) (19 msec.)