YES (ignored inputs)COMMENT translated from Cops 139 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), s(p(?x)) -> ?x, p(s(?x)) -> ?x, -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(?x,?y) -> +(?y,?x), -(+(?x,?y)) -> +(-(?x),-(?y)) ] Constructors: {0,p,s} Defined function symbols: {+,-} Constructor subsystem: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x,?y) -> +(?y,?x) ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), +(+(?x,?y),?z) -> +(?x,+(?y,?z)), -(+(?x,?y)) -> +(-(?x),-(?y)), +(?x,?y) -> +(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int} Signature: [ + : Int,Int -> Int, - : Int -> Int, 0 : Int, p : Int -> Int, s : Int -> Int ] Rule Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] Conjecture Part: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] Precedence (by weight): {(+,6),(-,5),(0,0),(p,2),(s,4)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), -(0) -> 0, -(s(?x)) -> p(-(?x)), -(p(?x)) -> s(-(?x)) ] Conjectures: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] STEP 0 ES: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS: [ ] ES0: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS0: [ ] ES1: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)), +(?x,?y) = +(?y,?x) ] HS1: [ ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5) ] ES2: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), +(?x,?y) = +(?y,?x), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ +(?x,0) -> ?x ] STEP 1 ES: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), +(?x,?y) = +(?y,?x), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ +(?x,0) -> ?x ] ES0: [ 0 = 0, s(?x_4) = s(?x_4), p(?x_5) = p(?x_5), +(?x,?y) = +(?y,?x), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS0: [ +(?x,0) -> ?x ] ES1: [ +(?x,?y) = +(?y,?x), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS1: [ +(?x,0) -> ?x ] Expand +(?x,?y) = +(?y,?x) [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] ES2: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS2: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 2 ES: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ ?y_3 = ?y_3, s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS0: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS1: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(?y_4,s(?x_4)) = s(+(?x_4,?y_4)) [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(?x_5,s(?x))) = s(+(?x,p(?x_5))) ] ES2: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(?x_5,s(?x))) = s(+(?x,p(?x_5))), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS2: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 3 ES: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(?x_5,s(?x))) = s(+(?x,p(?x_5))), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ s(?x) = s(?x), s(s(+(?x,?x_4))) = s(s(+(?x_4,?x))), +(?x,?x_5) = s(+(?x,p(?x_5))), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), s(+(?y,?x)) = s(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS0: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(?x,?x_5) = s(+(?x,p(?x_5))), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS1: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand s(+(?x,p(?x_5))) = +(?x,?x_5) [ s(p(?x_5)) = +(0,?x_5), s(s(+(?x_9,p(?x_5)))) = +(s(?x_9),?x_5), s(p(+(?x_10,p(?x_5)))) = +(p(?x_10),?x_5) ] ES2: [ ?x_5 = +(0,?x_5), s(s(+(?x_9,p(?x_5)))) = +(s(?x_9),?x_5), +(?x_10,p(?x_5)) = +(p(?x_10),?x_5), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS2: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 4 ES: [ ?x_5 = +(0,?x_5), s(s(+(?x_9,p(?x_5)))) = +(s(?x_9),?x_5), +(?x_10,p(?x_5)) = +(p(?x_10),?x_5), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ ?x_5 = ?x_5, s(+(?x_9,?x_5)) = s(+(?x_9,?x_5)), +(?x_10,p(?x_5)) = p(+(?x_10,?x_5)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS0: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(?x_10,p(?x_5)) = p(+(?x_10,?x_5)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), -(+(?x,?y)) = +(-(?x),-(?y)) ] HS1: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(?x_10,p(?x_5)) = p(+(?x_10,?x_5)) [ p(?x) = p(+(0,?x)), s(+(?x_9,p(?x))) = p(+(s(?x_9),?x)), p(+(?x_10,p(?x))) = p(+(p(?x_10),?x)) ] ES2: [ p(?x) = p(+(0,?x)), +(?x_9,?x) = p(+(s(?x_9),?x)), p(+(?x_10,p(?x))) = p(+(p(?x_10),?x)), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS2: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 5 ES: [ p(?x) = p(+(0,?x)), +(?x_9,?x) = p(+(s(?x_9),?x)), p(+(?x_10,p(?x))) = p(+(p(?x_10),?x)), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), +(?x,p(?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ p(?x) = p(?x), +(?x_9,?x) = +(?x_9,?x), p(p(+(?x_10,?x))) = p(p(+(?x_10,?x))), -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)), p(+(?x,?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = p(+(?y_5,?x_5)) ] HS0: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ -(+(?x,?y)) = +(-(?x),-(?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(-(?x),-(?y)) = -(+(?x,?y)) [ +(0,-(?y)) = -(+(0,?y)), +(p(-(?x_6)),-(?y)) = -(+(s(?x_6),?y)), +(s(-(?x_7)),-(?y)) = -(+(p(?x_7),?y)) ] ES2: [ -(?y) = -(+(0,?y)), p(+(-(?x_6),-(?y))) = -(+(s(?x_6),?y)), s(+(-(?x_7),-(?y))) = -(+(p(?x_7),?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS2: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 6 ES: [ -(?y) = -(+(0,?y)), p(+(-(?x_6),-(?y))) = -(+(s(?x_6),?y)), s(+(-(?x_7),-(?y))) = -(+(p(?x_7),?y)), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ -(?y) = -(?y), p(-(+(?x_6,?y))) = p(-(+(?x_6,?y))), s(-(+(?x_7,?y))) = s(-(+(?x_7,?y))), +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS0: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(+(?x,?y),?z) = +(?x,+(?y,?z)) ] HS1: [ +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(+(?x,?y),?z) = +(?x,+(?y,?z)) [ +(?y_3,?z) = +(0,+(?y_3,?z)), +(s(+(?x_4,?y_4)),?z) = +(s(?x_4),+(?y_4,?z)), +(p(+(?x_5,?y_5)),?z) = +(p(?x_5),+(?y_5,?z)) ] ES2: [ +(?y_3,?z) = +(0,+(?y_3,?z)), s(+(+(?x_4,?y_4),?z)) = +(s(?x_4),+(?y_4,?z)), p(+(+(?x_5,?y_5),?z)) = +(p(?x_5),+(?y_5,?z)) ] HS2: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 7 ES: [ +(?y_3,?z) = +(0,+(?y_3,?z)), s(+(+(?x_4,?y_4),?z)) = +(s(?x_4),+(?y_4,?z)), p(+(+(?x_5,?y_5),?z)) = +(p(?x_5),+(?y_5,?z)) ] HS: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ +(?y_3,?z) = +(?y_3,?z), s(+(+(?x_4,?y_4),?z)) = s(+(?x_4,+(?y_4,?z))), p(+(+(?x_5,?y_5),?z)) = p(+(?x_5,+(?y_5,?z))) ] HS0: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ ] HS1: [ +(+(?x,?y),?z) -> +(?x,+(?y,?z)), +(-(?x),-(?y)) -> -(+(?x,?y)), +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/139.trs: Success(GCR) (24 msec.)