YES (ignored inputs)COMMENT translated from Cops 134 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,?y) -> +(?y,?x) ] Constructors: {0,p,s} Defined function symbols: {+} Constructor subsystem: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)) ] [ +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), +(?x,?y) -> +(?y,?x) ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)) ] [ +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)), +(?x,?y) -> +(?y,?x) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int} Signature: [ + : Int,Int -> Int, 0 : Int, p : Int -> Int, s : Int -> Int ] Rule Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)) ] Conjecture Part: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,?y) = +(?y,?x) ] Precedence (by weight): {(+,2),(0,3),(p,1),(s,0)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(0,?y) -> ?y, +(s(?x),?y) -> s(+(?x,?y)), +(p(?x),?y) -> p(+(?x,?y)) ] Conjectures: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,?y) = +(?y,?x) ] STEP 0 ES: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,?y) = +(?y,?x) ] HS: [ ] ES0: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,?y) = +(?y,?x) ] HS0: [ ] ES1: [ +(?x,0) = ?x, +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)), +(?x,?y) = +(?y,?x) ] HS1: [ ] Expand +(?x,0) = ?x [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5) ] ES2: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), +(?x,?y) = +(?y,?x), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS2: [ +(?x,0) -> ?x ] STEP 1 ES: [ 0 = 0, s(+(?x_4,0)) = s(?x_4), p(+(?x_5,0)) = p(?x_5), +(?x,?y) = +(?y,?x), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS: [ +(?x,0) -> ?x ] ES0: [ 0 = 0, s(?x_4) = s(?x_4), p(?x_5) = p(?x_5), +(?x,?y) = +(?y,?x), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS0: [ +(?x,0) -> ?x ] ES1: [ +(?x,?y) = +(?y,?x), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)) ] HS1: [ +(?x,0) -> ?x ] Expand +(?x,?y) = +(?y,?x) [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] ES2: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)) ] HS2: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 2 ES: [ ?y_3 = +(?y_3,0), s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)) ] HS: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ ?y_3 = ?y_3, s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)) ] HS0: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ s(+(?x_4,?y_4)) = +(?y_4,s(?x_4)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,s(?y)) = s(+(?x,?y)), +(?x,p(?y)) = p(+(?x,?y)) ] HS1: [ +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(?y_4,s(?x_4)) = s(+(?x_4,?y_4)) [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(?x_5,s(?x))) = s(+(?x,p(?x_5))) ] ES2: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(?x_5,s(?x))) = s(+(?x,p(?x_5))), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS2: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 3 ES: [ s(?x) = s(+(?x,0)), s(+(?x_4,s(?x))) = s(+(?x,s(?x_4))), p(+(?x_5,s(?x))) = s(+(?x,p(?x_5))), +(?x,p(?y)) = p(+(?x,?y)), +(?x,s(?y)) = s(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ s(?x) = s(?x), s(s(+(?x,?x_4))) = s(s(+(?x_4,?x))), +(?x,?x_5) = s(+(?x,p(?x_5))), +(?x,p(?y)) = p(+(?x,?y)), s(+(?y,?x)) = s(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS0: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(?x,?x_5) = s(+(?x,p(?x_5))), +(?x,p(?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS1: [ +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand s(+(?x,p(?x_5))) = +(?x,?x_5) [ s(p(?x_5)) = +(0,?x_5), s(s(+(?x_9,p(?x_5)))) = +(s(?x_9),?x_5), s(p(+(?x_10,p(?x_5)))) = +(p(?x_10),?x_5) ] ES2: [ ?x_5 = +(0,?x_5), s(s(+(?x_9,p(?x_5)))) = +(s(?x_9),?x_5), +(?x_10,p(?x_5)) = +(p(?x_10),?x_5), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)) ] HS2: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 4 ES: [ ?x_5 = +(0,?x_5), s(s(+(?x_9,p(?x_5)))) = +(s(?x_9),?x_5), +(?x_10,p(?x_5)) = +(p(?x_10),?x_5), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)) ] HS: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ ?x_5 = ?x_5, s(+(?x_9,?x_5)) = s(+(?x_9,?x_5)), +(?x_10,p(?x_5)) = p(+(?x_10,?x_5)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)) ] HS0: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ +(?x_10,p(?x_5)) = p(+(?x_10,?x_5)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)), +(?x,p(?y)) = p(+(?x,?y)) ] HS1: [ s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Expand +(?x_10,p(?x_5)) = p(+(?x_10,?x_5)) [ p(?x) = p(+(0,?x)), s(+(?x_9,p(?x))) = p(+(s(?x_9),?x)), p(+(?x_10,p(?x))) = p(+(p(?x_10),?x)) ] ES2: [ p(?x) = p(+(0,?x)), +(?x_9,?x) = p(+(s(?x_9),?x)), p(+(?x_10,p(?x))) = p(+(p(?x_10),?x)), +(?x,p(?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS2: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] STEP 5 ES: [ p(?x) = p(+(0,?x)), +(?x_9,?x) = p(+(s(?x_9),?x)), p(+(?x_10,p(?x))) = p(+(p(?x_10),?x)), +(?x,p(?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = +(?y_5,p(?x_5)) ] HS: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES0: [ p(?x) = p(?x), +(?x_9,?x) = +(?x_9,?x), p(p(+(?x_10,?x))) = p(p(+(?x_10,?x))), p(+(?x,?y)) = p(+(?x,?y)), p(+(?x_5,?y_5)) = p(+(?y_5,?x_5)) ] HS0: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] ES1: [ ] HS1: [ +(?x_10,p(?x_5)) -> p(+(?x_10,?x_5)), s(+(?x,p(?x_5))) -> +(?x,?x_5), +(?y_4,s(?x_4)) -> s(+(?x_4,?y_4)), +(?x,?y) -> +(?y,?x), +(?x,0) -> ?x ] Conj part consisits of inductive theorems of R0. examples/fromCops/cr/134.trs: Success(GCR) (16 msec.)