YES *** Computating Strongly Quasi-Reducible Parts *** TRS: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), -(0,0) -> 0, -(?x,s(?y)) -> p(-(?x,?y)), -(?x,p(?y)) -> s(-(?x,?y)), -(p(?x),?y) -> p(-(?x,?y)), -(s(?x),?y) -> s(-(?x,?y)) ] Constructors: {0,p,s} Defined function symbols: {+,-} Constructor subsystem: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x ] Rule part & Conj Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), -(0,0) -> 0, -(?x,s(?y)) -> p(-(?x,?y)), -(?x,p(?y)) -> s(-(?x,?y)), -(p(?x),?y) -> p(-(?x,?y)), -(s(?x),?y) -> s(-(?x,?y)) ] [ ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Int} Signature: [ + : Int,Int -> Int, - : Int,Int -> Int, s : Int -> Int, p : Int -> Int, 0 : Int ] Rule Part: [ s(p(?x)) -> ?x, p(s(?x)) -> ?x, +(?x,0) -> ?x, +(?x,s(?y)) -> s(+(?x,?y)), +(?x,p(?y)) -> p(+(?x,?y)), -(0,0) -> 0, -(?x,s(?y)) -> p(-(?x,?y)), -(?x,p(?y)) -> s(-(?x,?y)), -(p(?x),?y) -> p(-(?x,?y)), -(s(?x),?y) -> s(-(?x,?y)) ] Conjecture Part: [ ] Precedence (by weight): {(+,6),(-,7),(0,0),(p,5),(s,4)} Rule part is confluent. R0 is ground confluent. Conjucture part is empty. examples/additions/int5.trs: Success(GCR) (41 msec.)