YES (ignored inputs)COMMENT [Kapur et al. IC 1999] Example 2.2 *** Computating Strongly Quasi-Reducible Parts *** TRS: [ f(g(f(?x))) -> g(f(g(?x))), f(c) -> c, g(c) -> c ] Constructors: {c} Defined function symbols: {f,g} Constructor subsystem: [ ] Rule part & Conj Part: [ f(c) -> c, g(c) -> c ] [ f(g(f(?x))) -> g(f(g(?x))) ] *** Ground Confluence Check by Rewriting Induction *** Sort: {Elem} Signature: [ f : Elem -> Elem, g : Elem -> Elem, c : Elem ] Rule Part: [ f(c) -> c, g(c) -> c ] Conjecture Part: [ f(g(f(?x))) = g(f(g(?x))) ] Precedence (by weight): {(c,0),(f,2),(g,1)} Rule part is confluent. R0 is ground confluent. Check conj part consists of inductive theorems of R0. Rules: [ f(c) -> c, g(c) -> c ] Conjectures: [ f(g(f(?x))) = g(f(g(?x))) ] STEP 0 ES: [ f(g(f(?x))) = g(f(g(?x))) ] HS: [ ] ES0: [ f(g(f(?x))) = g(f(g(?x))) ] HS0: [ ] ES1: [ f(g(f(?x))) = g(f(g(?x))) ] HS1: [ ] Expand f(g(f(?x))) = g(f(g(?x))) [ f(g(c)) = g(f(g(c))) ] ES2: [ c = g(f(g(c))) ] HS2: [ f(g(f(?x))) -> g(f(g(?x))) ] STEP 1 ES: [ c = g(f(g(c))) ] HS: [ f(g(f(?x))) -> g(f(g(?x))) ] ES0: [ c = c ] HS0: [ f(g(f(?x))) -> g(f(g(?x))) ] ES1: [ ] HS1: [ f(g(f(?x))) -> g(f(g(?x))) ] Conj part consisits of inductive theorems of R0. examples/additions/elem1.trs: Success(GCR) (6 msec.)